Словарь научных терминов

Бутадиен-стирольные каучуки

БУТАДИЕН-СТИРОЛЬНЫЕ КАУЧУКИ (дивинил-стирольные каучуки, стирольные каучуки, БСК, СКС, СКМС, ДССК, америпол, интол, карифлекс, крилен, нипол, плайофлекс, SBR, синпол, солпрен, стереон, тьюфден, филпрен, юниден), сополимеры бутадиена со стиролом илиhttps://www.medpulse.ru/image/encyclopedia/8/0/0/3800.jpegметилстиролом общей ф-лы:

(R-Hhttps://www.medpulse.ru/image/encyclopedia/8/0/1/3801.jpeg или СН3). Мономеры сополимеризуют в эмульсии или р-ре.

Структура и свойства каучуков. Содержание стирольных (https://www.medpulse.ru/image/encyclopedia/8/0/2/3802.jpegметилстирольных) звеньев в макромолекуле Б.-с. к. различных типов составляет 8-45%. В макромолекулах наиб. распространенных эмульсионных сополимеров, содержащих 23-25% стирольных звеньев, 60-70% звеньев бутадиена присоединены в положениях 1,4-транс, 12-20% - в положениях 1,4-цис и 15-18% - в положениях 1,2. В макромолекулах таких же каучуков, синтезированных в р-ре, содержание бутадиеновых звеньев 1,4-транс, 1,4-цис и 1,2 составляет соотв. > 40, 35-40 и ок. 25%. Вследствие нерегулярности строения Б.-с. к. не кристаллизуются.

Среднечисловая мол. массаhttps://www.medpulse.ru/image/encyclopedia/8/0/3/3803.jpeg эмульсионных каучуков составляет ~ 105, полученных в р-ре - 1,5*105, индекс полидисперсностиhttps://www.medpulse.ru/image/encyclopedia/8/0/4/3804.jpeg -соотв. 4-7 и 1,5-2,0 (https://www.medpulse.ru/image/encyclopedia/8/0/5/3805.jpeg среднемассовая мол. масса). Макромолекулы Б.-с. к. имеют разветвленное строение. Каучуки содержат значит. кол-no микрогеля. Их ненасыщенность составляет, как правило, до 90% от теоретической. Б.-с. к. растворяются в ароматич., алициклич. и алифатич. углеводородах. Многие физ. св-ва каучуков зависят от содержания в них стирольных звеньев (см. табл. 1).

Табл. 1. - ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭМУЛЬСИОННЫХ БУТАДИЕН-СТИРОЛЬНЫХ КАУЧУКОВ С РАЗЛИЧНЫМ СОДЕРЖАНИЕМ СТИРОЛЬНЫХ ЗВЕНЬЕВ

Показатель
Содержание стирольных звеньев, %
~8
~23
~45
Плотн. (25 °С), г/см3
0,900-0,910
0,930-0,940
0,990
Т. стекл, °С
От -70 до -74
От -52 до -56
От -13 до -15
nD20
1,5320
1,5350
1,5520
Плотность энергии когезии, МДж/мэ
-
275-306
-

Под действием BF3 или Н2 [SnCl6] при 160-180 °С Б.-с. к. изомеризуются. При обработке в р-ре серной к-той (180°С) они циклизуются. Гидрохлорирование каучуков при 70-100°С и повышенном давлении сопровождается их деструкцией. При действии л-толуолсульфонилгидразида на раствор Б.-с. к. в диметиловом эфире диэтиленгликоля (диглиме) происходит исчерпывающее гидрирование двойных связей.

Окисление Б.-с. к. приводит к глубоким структурным изменениям, сопровождающимся ухудшением их св-в. Для стабилизации каучуков в условиях хранения и переработки применяют обычные антиоксиданты, напр. N-фенил-2-нафтиламин, его смесь с N,N'-дифенил-1,4-фенилендиамином, три(n-ионилфенил)фосфит (обычно не более 2 мас. ч. на 100 мас. ч. каучука).

Получение каучуков, их модификации. Б.-с. к. синтезируют по непрерывной схеме в батарее последовательно соединенных реакторов (мономеры и др. компоненты реакционной смеси подают в первый реактор). Эмульсионные каучуки получают радикальной сополимеризацией при 5 или 50 °С (соотв. низкотемпературные, или "холодные", и высокотемпературные, или "горячие", каучуки). При синтезе "горячих" каучуков инициатором служит K2S2O8, при синтезе "холодных" - окислит.-восстановит. система, напр. содержащая гидропероксид циклогексилизопропилбензола, соль Fe2+, этилендиаминтетраацетат Na (трилон Б), Na-соль формальдегидсульфокислоты (ронгалит). В кач-ве эмульгатора применяют мыла высших жирных к-т или к-т канифоли. Мол. массу сополимеров регулируют при помощи меркаптанов, напр. трет-додецилмеркаптана. Степень превращения мономеров обычно 60-70%, продолжительность процесса 10-12 ч. После обрыва полимеризации (для этого используют диметилдитиокарбамат Na), отгонки непрореагировавших мономеров и введения в латекс водной дисперсии стабилизатора каучук коагулируют, промывают водой и сушат. Товарные формы Б.-с. к. - брикеты и смотанная в рулоны лента.

При синтезе Б.-с. к. в растворе в реактор подают смесь мономеров, углеводородного р-рителя (тщательно очищенных от следов влаги и кислорода) и катализатора - обычно комплекса LiAlk с электронодонорным соединением. После окончания полимеризации, дезактивации катализатора, введения р-ра стабилизатора и отгонки р-рителя с водяным паром полученную крошку каучука сушат и прессуют.

Эмульсионные Б.-с. к. содержат до 8-9% некаучуковых в-в, гл. обр. орг. кислот. Кол-во примесей в каучуках, синтезированных в р-ре, намного меньше. На основе низкотемпературных сополимеров получают масло-, саже- и сажемаслонаполненные каучуки. Наполнители вводят в латекс (после обрыва полимеризации и отгонки непрореагировавших мономеров) с целью облегчения послед. переработки каучука и улучшения технол. характеристик резиновых смесей (см. также Наполненные каучуки).

Технологические характеристики каучуков. Резиновые смеси. Вязкость по Муни (100 °С) большинства типов Б.-с. к. составляет 40-60; за рубежом вырабатывают спец. эмульсионные каучуки С вязкостью по Муни 25-35 и 100-130 (соотв. "мягкие" и "жесткие"). Перерабатывают Б.-с. к. на обычном оборудовании резиновых заводов (вальцах, смесителях, каландрах, экструдерах). Изделия вулканизуют при 140-180°С в прессах, котлах, спец. агрегатах. Технол. св-ва каучуков улучшаются с повышением содержания в них стирольных звеньев. наиб. легко перерабатываются низкотемпературные эмульсионные каучуки, наиб. трудно - синтезируемые в р-ре. "Жесткие" каучуки в случае необходимости подвергают термоокислит. пластикации при 130-140 °С.

Б.-с. к. технологически совместимы с др. каучуками - натуральным, синтетич. изопреновым, бутадиеновым, бутилкаучуком и др. Для улучшения клейкости резиновых смесей Б.-с. к. совмещают, напр., с феноло-формальд. или инден-кумароновыми смолами, для повышения стойкости вулканизатов к действию р-рителей - с бутадиен-нитрильными, хлоропреновыми или полисульфидными каучуками.

Осн. вулканизующий агент для Б.-с.к.-сера; при получении резин с улучшенной теплостойкостью применяют тетраметилтиурамдисульфид или орг. пероксиды. Ускорителями серной вулканизации служат ди(2-бензотиазолил)ди-сульфид, N-циклогексилбензотиазол-2-сульфенамид (сульфенамид Ц) и др. В кач-ве наполнителей резиновых смесей используют техн. углерод (чаще активный), а также мел, каолин и др.; кол-во этих ингредиентов может достигать 100-150 мас. ч. на 100 мас. ч. каучука.

Свойства вулканизатов. Резины на основе Б.-с. к., содержащие активные наполнители, характеризуются достаточно высокими прочностными св-вами, износостойкостью и эластичностью (см. табл. 2). Вулканизаты низкотемпературных эмульсионных каучуков превосходят по прочностным св-вам вулканизаты высокотемпературных. Резины из Б.-с. к., синтезированного в р-ре, обладают неск. лучшей морозостойкостью, эластичностью и износостойкостью и меньшим теплообразованием, чем резины из эмульсионных каучуков. С увеличением содержания в макромолекуле каучука стирольных звеньев возрастают прочность при растяжении и сопротивление раздиру, но ухудшаются эластичность и морозостойкость резин.

Табл. 2. - СВОЙСТВА ВУЛКАНИЗАТОВ НИЗКОТЕМПЕРАТУРНЫХ ЭМУЛЬСИОННЫХ БУТАДИЕНhttps://www.medpulse.ru/image/encyclopedia/8/0/6/3806.jpegМЕТИЛСТИРОЛЬНЫХ КАУЧУКОВ, СОДЕРЖАЩИХ ОКОЛО 23% СТИРОЛЬНЫХ ЗВЕНЬЕВ*
https://www.medpulse.ru/image/encyclopedia/8/0/7/3807.jpeg

* Наполнитель - активный техн. углерод (40-50 мас. ч.). Вулканизация 80 мин при 143°С

Резины из Б.-с. к. достаточно стойки к действию конц. р-ров щелочей и к-т, а также спиртов, кетонов и эфиров. По устойчивости в ароматич. и алифатич. углеводородах, минер. маслах, растит. и животных жирах они превосходят резины из НК, а по газопроницаемости практически равноценны им. По теплофиз. св-вам вулканизаты Б.-с. к. мало отличаются от вулканизатов др. каучуков: их коэф. объемного расширения (5,3-6,6)*10-4 К-1, коэф. теплопроводности 0,22-0,30 Вт/(м*К), уд. теплоемкость 1,5-1,9 кДж/(кг*К). Электрич. характеристики резин:https://www.medpulse.ru/image/encyclopedia/8/0/8/3808.jpeg~7 ТОм*м;https://www.medpulse.ru/image/encyclopedia/8/0/9/3809.jpeg 2,4-2,6 (1,5-20 МГц); tghttps://www.medpulse.ru/image/encyclopedia/8/1/0/3810.jpeg 0,006.

Применение каучуков. Б.-с. к. - типичные каучуки общего назначения, используемые гл. обр. в произ-ве шин (обычно в комбинации с НК, синтетич. изопреновым или стереорегулярным бутадиеновым каучуком). На основе Б.-с. к. изготовляют также многочисленные РТИ (конвейерные ленты, рукава, профили, формовые детали), а также изоляцию кабелей, обувь, спортивные изделия и др.

Мировое произ-во Б.-с. к. превышает 4 млн. т/год (1982); по объему выпуска они занимают первое место среди всех СК.

Лит.: Синтетический каучук, под ред. И. В. Гармонова, 2 изд., Л., 1983, с. 300-10, 193-238; Brydson J. A., Rubber chemistry, L, 1978; Wood L. A., "Rubber Chem. and Technol.", 1976, v.' 49, N 2, p. 189-99. Б. Д. Бабицкий, В. А. Дроздов.


"бутилксантогенат" 1,3-бензодиоксол 1,3-бутадиен 1,4-бензодиазепин 4-трет-бутилциклогексилацетат N-бензоил-n-фенилгидроксиламин S-бензилтиуронийхлорид Байера-виллигера реакция Бактериальные удобрения Бактериородопсин Бактерициды Балата Баллиститы Бальзамы Барбамил Барбитуровая кислота Барботирование Барбье-виланда реакция Барий Барит Бария гидроксид Бария карбонат Бария нитрат Бария оксид Бария сульфат Бария титанат Бария фторид Бария хлорид Барта реакция Бартона правила Бартона реакция Батохромный сдвиг Безградиентный реактор Безотходные производства Безызлучательные переходы Бейльштейна проба Бекмана перегруппировка Белая сажа Белки-переносчики Белоусова - жаботинского реакция Белые масла Бензальдегид Бензальхлорид Бензамид Бензанилид Бензантрон Бензидин Бензидиновая перегруппировка Бензизоксазол Бензизотиазол Бензил Бензиламин Бензиловая перегруппировка Бензилхлорид Бензилцианид Бензимидазол Бензины Бензины-растворители Бензйловый спирт Бензо- и маслостойкость Бензо-2,1,3-селенадиазол Бензо-2,1,3-тиадиазол Бензогексоний Бензоилацетон Бензоилпероксид Бензоилуксусный эфир Бензоилфторид Бензоилхлорид Бензоин Бензоиновая конденсация Бензойная кислота Бензойная смола Бензоксазол Бензол Бензолполикарбоновые кислоты Бензолсульфамиды Бензолсульфокислоты Бензолсульфохлориды Бензонитрил Бензопираны Бензопирены Бензопиридазины Бензопирилия соли Бензоптеридины Бензотиазол Бензотиофены Бензотриазол Бензотрифторид Бензотрихлорид Бензофенон Бензофураны Бензохиноны Берберин Бергамилат Бергаптен Бериллий Бериллийорганические соединения Бериллия оксид Бериллия фторид Берклий Бесстружковый анализ Бетаины Бетон Бизаболен Бикомпонентные нити Бикукулин Бимолекулярные реакции Биокоррозия Биологические методы анализа Бионеорганическая химия Биоорганическая химия Биополимеры Биосинтез Биосфера Биотехнология Биотин Биофлавоноиды Биохимия Биоциды Биоэлектрохимия Биоэнергетика Бирадикалы Бисфенол Битуминозные пески Битумные лаки Битумные материалы Битумы Битумы нефтяные Битумы твердых горючих ископаемых Биурет Биуретовая реакция Бифенил Бишлера реакция Бишлера-напиральского реакция Благородные газы Благородные металлы Блеомицины Блоксополимеры Блочная полимеризация Бобровая струя Бойля-мариотта закон Болотный газ Больцмана постоянная Бона-шмидта реакция Бор Бора карбиды Бора нитрид Бора оксиды Бора трифторид Бора трихлорид Боразол Бораты неорганические Бораты органические Бориды Борнеолы Борные кислоты Борные руды Борные удобрения Бороводороды Боровский радиус Борогидриды металлов Бородина - хунсдиккера реакция Боропластики Борорганические полимеры Борорганические соединения Ботулинические токсины Брауна правило селективности Брауна реакция Брауна-уокера реакция Бредта правило Бризантные взрывчатые вещества Брожение Бром Броматометрия Броматы Бромбензилцианид Бромбензолы Бромирование Бромное число Бромпирогалловый красный Бромстирол Бронзы Бронзы оксидные Бруцин Брюстера метод Брёнстеда уравнение Буво-блана восстановление Букарбан Бульвален Бумага Бумага синтетическая Бумажная хроматография Бура Бурые угли Бутадиен-нитрильные каучуки Бутадиен-стирольные каучуки Бутадиеновые каучуки Бутадион Бутанолы Бутаны Бутены Бутилакрилаты Бутиламины Бутилацетаты Бутиленгликоли Бутилены Бутилкаучук Бутиллитий Бутилметакрилаты Бутиловые спирты Бутиндиолы Бутиролактон Бутлерова реакция Буферный раствор Буфотенин Бухерера реакции Бухнера - курциуса - шлоттербека реакция Бытовая химия Бэмфорда-стивенса реакция Бёрча реакция Трет-бутилгидропероксид Трет-бутилпероксид