Словарь научных терминов

Безотходные производства

БЕЗОТХОДНЫЕ ПРОИЗВОДСТВА в хим. технологии (безотходная технология), осуществляются по оптим. технол. схемам (см. Оптимизация) с замкнутыми (рециркуляционными) материальными и энергетич. потоками, не имеют сточных вод (бессточные произ-ва), газовых выбросов в атмосферу и твердых отходов (безотвальные произ-ва). Термин "Б.п." носит условный характер, т.к. в реальных условиях из-за несовершенства совр. технологии невозможно полностью исключить все отходы и воздействие произ-ва на окружающую среду. При Б. п. наиболее рационально используются прир. и вторичные сырьевые ресурсы и энергия с миним. ущербом для окружающей среды.

В концепцию безотходности произ-ва значит. вклад внесли советские ученые (А. Е. Ферсман, Н. Н. Семенов, И. В. Пет-рянов-Соколов, Б. Н. Ласкорин и др.). По аналогии с прир. экологич. системами Б. п. базируются на техногенном круговороте в-в и энергии. Необходимость в создании Б. п. возникла в 50-х гг. 20 в. в связи с истощением мировых прир. ресурсов и загрязнением биосферы в результате бурного развития, наряду с химизацией с. х-ва и ростом транспорта, ведущих отраслей энергетики и обрабатывающей пром-сти (переработка нефти, хим. пром-сть, ядерная энергетика, цветная металлургия и др.).

Согласно представлениям Д. И. Менделеева (1885), мерой совершенства произ-ва является кол-во отходов. С развитием науки и техники каждое произ-во все более приближается к безотходному. На данном этапе к Б. п. относятся, по существу, малоотходные произ-ва, в к-рых только небольшая часть сырья превращ. в отходы. Последние подвергают захоронению, обезвреживанию или направляют на длит. хранение с целью их утилизации в перспективе. В малоотходных произ-вах выбросы вредных в-в не превышают ПДК, а также уровня, при к-ром предотвращаются необратимые экологические изменения (см. Охрана природы).

Осн. направления создания малоотходных произ-в на отдельном предприятии или в целом пром. регионе: экологически безопасная подготовка и комплексная переработка сырья в сочетании с очисткой вредных выбросов, утилизацией отходов, оптим. использованием энергии, водо- и газооборотных циклов; применение т. наз. коротких (малостадийных) технол. схем с макс. извлечением целевых и побочных продуктов на каждой стадии; замена периодич. процессов непрерывными с использованием автоматизир. систем управления ими и более совершенного оборудования; широкое вовлечение в произ-во вторичных ресурсов.

Развитие хим., нефтеперерабатывающей, нефтехим. и ряда др. отраслей пром-сти связано с разработкой т. наз. энерготехнол. схем - систем большой единичной мощности. Последние наряду с макс. использованием сырья и энергии обеспечивают высокоэффективную очистку сточных вод и газовых выбросов в атмосферу благодаря применению безводных технол. процессов, водо- и газооборотных (включая воздухооборотные) циклов, к-рые экологически и экономически целесообразнее, чем соотв. прямоточное водоснабжение и газов очистка до санитарных норм.

Оптим. использование сырьевых ресурсов достигается их комплексной переработкой. Примеры: хим. переработка твердых топлив (см. Коксохимия), нефти (см. Нефтепереработка), апатито-нефелиновых, фосфорито-апатитовых, полиметаллич. руд и т.д. Напр., при комплексной переработке апатито-нефелиновых руд помимо фосфатов получают также др. ценные продукты. Так, в СССР впервые в мире разработана и осуществлена технология переработки нефелинов - отходов обогащения апатитов. В результате на 1 т глинозема получают 0,2-0,3 т К2СО3, 0,60-0,75 т Na2CO3 и 9-10 т цемента. Такая технология в сочетании с замкнутым водооборотом и эффективной очисткой газов печей спекания и цементного произ-ва обеспечивает миним. кол-во отходов. Прогрессивный метод азотнокислотного разложения фосфоритов и апатитов при получении сложных удобрений (напр., нитроаммофоски) исключает образование фосфогипса - многотоннажного отхода произ-ва этих удобрений сернокислотным способом. Наряду с азотно-фосфорными или азотно-фосфорно-калийными удобрениями получают SrCO3, CaCO3, CaF2, NH4NO3, оксиды РЗЭ и др. важные продукты.

Оптим. использование энергоресурсов достигается рациональным расходованием их для технол. нужд на разл. стадиях произ-ва, а также утилизацией теплоты низкого потенциала (50-150°С) для обеспечения комфортных условий труда в пром. и непроизводств. помещениях, для коммунально-бытового горячего водоснабжения, отопления, вентиляции, кондиционирования воздуха, обогрева теплиц, водоемов и т.д. наиб. эффективно в хим. пром-сти энергоресурсы используют в совр. энерготехнол. схемах произ-в NH3, слабой HNO3 и карбамида.

Прогрессивная форма организации Б.п. - комбинирование разных технол. схем. Для хим. пром-сти особенно характерно применение отходов осн. произ-ва в кач-ве сырья вновь организуемых подчиненных произ-в. Так, произ-во NH3 совмещают, используя его отход - СО2, с произ-вом карбамида на одном хим. предприятии. Др. типичный пример - объединение хим. предприятия по произ-ву H2SO4 с металлургическим, на отходах к-рого (флотационном колчедане и отходящих печных газах, содержащих SO2) оно базируется. Важная роль в утилизации твердых вторичных сырьевых ресурсов принадлежит пром-сти строит. материалов. Напр., доменные шлаки (практически полностью) и фосфогипс применяют для произ-ва цемента, шлакоси-таллов, минер. ваты, шлаковой пемзы, гипсовых вяжущих и т.д.

Создание Б. п. особенно эффективно на основе принципиально новых технол. процессов. Пример - бескоксовый, бездоменный метод получения стали, при к-ром из технол. схемы исключены стадии, в макс. степени влиявшие на загрязнение окружающей среды: доменный передел. произ-во кокса и агломерата. Такая технология обеспечивает значит. снижение выбросов в атмосферу SO2, пыли и др. вредных в-в, позволяет втрое уменьшить потребление воды и практически полностью утилизировать все твердые отходы.

Перспективно также применение, напр., в гидрометаллургии сорбционных, сорбционно-экстракционных и экстракционных процессов, к-рые обеспечивают высокую избирательность извлечения разл. компонентов, эффективную очистку сточных вод и отсутствие газовых выбросов в атмосферу. Так, экстракционные процессы используют для извлечения и разделения, напр., Та и Nb, РЗЭ, Т1 и In, а также при получении Аи высокой чистоты (см. также Выщелачивание).

Важную роль в создании Б. п. играет совершенствование аппаратурного оформления технол. процессов. Так, переход произ-ва аммиака на агрегаты большой единичной мощности, воздушное охлаждение и турбокомпрессоры дал возможность наряду с улучшением использования тепловой энергии снизить расход оборотной воды (с 550 до 50-60 м3 на 1 т NH3), кол-во СО и оксидов в выхлопных газах до концентраций, предусмотренных санитарными нормами.

Мембранная аппаратура (см. Мембранные процессы разделения)позволяет осуществить водооборот (напр., в целлюлозно-бумажном произ-ве); почти полностью извлекать синтезированный микроорганизмами белок из культуралъных жидкостей в микробиол. пром-сти; очищать сточные воды от избыточных кол-в щелочей и к-т, не применяя трудоемкие операции их нейтрализации (напр., в хим. и химико-металлургич. произ-вах), от радиоактивных отходов (напр., на атомных электростанциях), от вредных для окружающей среды ПАВ и т.д.

Работы по созданию Б. п. интенсивно проводятся во всех промышленно развитых странах. Проблемы Б. п. нашли отражение в ряде международных соглашений, постановлениях партии и правительства СССР по вопросам охраны окружающей среды.

Лит.: Кафаров В. В., Принципы создания безотходных химических производств, М., 1982; Безотходное промышленное производство. Организация безотходных производств, М., 1983; Ласкорин Б. Н., Барский Л. А., Перси ц В. 3., Безотходная технология переработки минерального сырья. Системный анализ, М., 1984. Г. А. Ягодин.


"бутилксантогенат" 1,3-бензодиоксол 1,3-бутадиен 1,4-бензодиазепин 4-трет-бутилциклогексилацетат N-бензоил-n-фенилгидроксиламин S-бензилтиуронийхлорид Байера-виллигера реакция Бактериальные удобрения Бактериородопсин Бактерициды Балата Баллиститы Бальзамы Барбамил Барбитуровая кислота Барботирование Барбье-виланда реакция Барий Барит Бария гидроксид Бария карбонат Бария нитрат Бария оксид Бария сульфат Бария титанат Бария фторид Бария хлорид Барта реакция Бартона правила Бартона реакция Батохромный сдвиг Безградиентный реактор Безотходные производства Безызлучательные переходы Бейльштейна проба Бекмана перегруппировка Белая сажа Белки-переносчики Белоусова - жаботинского реакция Белые масла Бензальдегид Бензальхлорид Бензамид Бензанилид Бензантрон Бензидин Бензидиновая перегруппировка Бензизоксазол Бензизотиазол Бензил Бензиламин Бензиловая перегруппировка Бензилхлорид Бензилцианид Бензимидазол Бензины Бензины-растворители Бензйловый спирт Бензо- и маслостойкость Бензо-2,1,3-селенадиазол Бензо-2,1,3-тиадиазол Бензогексоний Бензоилацетон Бензоилпероксид Бензоилуксусный эфир Бензоилфторид Бензоилхлорид Бензоин Бензоиновая конденсация Бензойная кислота Бензойная смола Бензоксазол Бензол Бензолполикарбоновые кислоты Бензолсульфамиды Бензолсульфокислоты Бензолсульфохлориды Бензонитрил Бензопираны Бензопирены Бензопиридазины Бензопирилия соли Бензоптеридины Бензотиазол Бензотиофены Бензотриазол Бензотрифторид Бензотрихлорид Бензофенон Бензофураны Бензохиноны Берберин Бергамилат Бергаптен Бериллий Бериллийорганические соединения Бериллия оксид Бериллия фторид Берклий Бесстружковый анализ Бетаины Бетон Бизаболен Бикомпонентные нити Бикукулин Бимолекулярные реакции Биокоррозия Биологические методы анализа Бионеорганическая химия Биоорганическая химия Биополимеры Биосинтез Биосфера Биотехнология Биотин Биофлавоноиды Биохимия Биоциды Биоэлектрохимия Биоэнергетика Бирадикалы Бисфенол Битуминозные пески Битумные лаки Битумные материалы Битумы Битумы нефтяные Битумы твердых горючих ископаемых Биурет Биуретовая реакция Бифенил Бишлера реакция Бишлера-напиральского реакция Благородные газы Благородные металлы Блеомицины Блоксополимеры Блочная полимеризация Бобровая струя Бойля-мариотта закон Болотный газ Больцмана постоянная Бона-шмидта реакция Бор Бора карбиды Бора нитрид Бора оксиды Бора трифторид Бора трихлорид Боразол Бораты неорганические Бораты органические Бориды Борнеолы Борные кислоты Борные руды Борные удобрения Бороводороды Боровский радиус Борогидриды металлов Бородина - хунсдиккера реакция Боропластики Борорганические полимеры Борорганические соединения Ботулинические токсины Брауна правило селективности Брауна реакция Брауна-уокера реакция Бредта правило Бризантные взрывчатые вещества Брожение Бром Броматометрия Броматы Бромбензилцианид Бромбензолы Бромирование Бромное число Бромпирогалловый красный Бромстирол Бронзы Бронзы оксидные Бруцин Брюстера метод Брёнстеда уравнение Буво-блана восстановление Букарбан Бульвален Бумага Бумага синтетическая Бумажная хроматография Бура Бурые угли Бутадиен-нитрильные каучуки Бутадиен-стирольные каучуки Бутадиеновые каучуки Бутадион Бутанолы Бутаны Бутены Бутилакрилаты Бутиламины Бутилацетаты Бутиленгликоли Бутилены Бутилкаучук Бутиллитий Бутилметакрилаты Бутиловые спирты Бутиндиолы Бутиролактон Бутлерова реакция Буферный раствор Буфотенин Бухерера реакции Бухнера - курциуса - шлоттербека реакция Бытовая химия Бэмфорда-стивенса реакция Бёрча реакция Трет-бутилгидропероксид Трет-бутилпероксид