Словарь научных терминов
Кипение
КИПЕНИЕ, переход жидкости в пар, образующий в ее объеме структурные элементы (паровые пузыри, пленки, струи); фазовый переход первого рода. На границе раздела пар жидкость фазовый переход при К. осуществляется путем испарения. Пузырьки растут вследствие испарения в них жидкости, всплывают, и содержащийся в них насыщ. пар переходит в паровую фазу над жидкостью. К. - одно из фундам. физ. явлений, используемое во мн. процессах хим. технологии. Особенность последних состоит в широком применении р-ров и смесей разл. в-в в качестве рабочих тел. Сложная термогидродинамика К. чистых жидкостей и р-ров оказывает существ. влияние на конструкции и габаритные размеры технол. аппаратов. Работа, затрачиваемая на увеличение объема и поверхностной энергии сферич. пузыря радиуса R, определяется по ф-ле: L0=-(4/3)pR3Dp+4pЛ2s, где Dp - разность давлений в пузыре и окружающей жидкости, Па; а коэф. поверхностного натяжения, Н/м. Миним. радиус возникающего парового пузыря (зародыша) Rмин=кипs/[rrпж-Tкип)], где rп - плотность пара, кг/м3; r - теплота парообразования, Дж/кг (Тж и Ткип пояснены ниже). Местами, в к-рых возникают зародыши паровой фазы, могут служить газообразные включения, твердые частицы, находящиеся в жидкости, микровпадины на пов-стях нагрева и др. Работа, необходимая для образования парового "пятна" на стенке и границы раздела пар - жидкость: L=L0(0,5+0,75cosQ-0,25cos3Q), где Q - краевой угол смачивания. При Q=180° работа L=0, т.е. на абс. смачиваемой пов-сти образуется сферический пузырь, как и в объеме жидкости. С понижением давления уменьшается плотность пара, возрастает миним. радиус образования зародышей, пов-сть нагрева обедняется центрами генерации паровых пузырей. Это приводит к нестабильному К., при к-ром происходит конвективное движение перегретой жидкости, сменяемое бурным вскипанием, инициированным одной или неск. микровпадинами подходящего радиуса. С понижением т-ры при вскипании жидкости эти микровпадины "выключаются", и снова повторяется цикл перегрева движущейся конвективно жидкости. Т-ра, при к-рой происходит К. жидкости, находящейся под постоянным давлением (напр., атмосферным), наз. т-рой К. (Ткип). В качестве Tкип принимают т-ру насыщ. пара (т-ру насыщения) над плоской пов-стью жидкости, кипящей при данном давлении. Т-ра К. при атм. давлении приводится обычно как одна из осн. физ.-хим. характеристик химически чистого в-ва. С возрастанием давления Ткип увеличивается (см. Клапейрона - Клаузиуса уравнение). Предельная Ткип - критич. т-ра в-ва (см. Критические явления). Понижение Ткип с уменьшением внеш. давления лежит в основе определения барометрич. давления. Различают объемное и поверхностное К. Объемное К.-образование паровых пузырей внутри массы жидкости, находящейся в перегретом, или метастабильном, состоянии при Тжкип, где Тж - т-ра перегретой жидкости. Такое К. реализуется в т. наз. аппаратах объемного вскипания, эффективных для обезвреживания и утилизации агрессивных жидкостей, в частности дистиллерных в содовом производстве. Поверхностное К.-парообразование на пов-сти нагрева, имеющей т-ру Тнкип. Такое К. возможно и в случае, когда т-ра осн. массы жидкости Тжкип, но в окрестности пов-сти нагрева образовался пограничный слой, перегретый до т-ры, превышающей Ткип. Осн. виды поверхностного К. - пузырьковое и пленочное. Пузырьковое К. возникает при умеренных тепловых потоках на микровпадинах пов-сти, смачиваемой жидкостью. Пар генерируется на действующих центрах парообразования в виде цепочек пузырей. Благодаря циркуляции жидкости, непосредственно контактирующей с пов-стью нагрева, обеспечивается высокая интенсивность теплоотдачи - в данном случае коэф. теплоотдачи a[Вт/(м2.К)] пропорционален плотности теплового потока q(Вт/м2) в степени ~0,7. Пленочное К. возникает на несмачиваемых пов-стях нагрева (напр., К. ртути в стеклянной трубке); на смачиваемых пов-стях пузырьковое К. переходит в пленочное (первый кризис К.) при достижении первой критич. плотности теплового потока qкр,1. Интенсивность теплоотдачи при пленочном К. значительно меньше, чем при пузырьковом, что обусловлено малыми значениями коэф. теплопроводности l[Вт/(м.К)] и плотности пара по сравнению с их значениями для жидкости. При ламинарном движении пара в пленке a~q-O,25, при турбулентном движении интенсивность теплоотдачи мало зависит от плотности теплового потока и размеров нагревателя. Повышение давления приводит к возрастанию а в обоих случаях. Разрушение пленочного К. и восстановление пузырькового (второй кризис К.) на смачиваемых пов-стях происходит при второй критич. плотности теплового потока qкр,2[qкр.1 (рис. 1). Кризисы К. определяются преим. гидродинамич. механизмом потери устойчивости структуры пристенного двухфазного пограничного слоя. Критерий гидродинамич. устойчивости К. имеет вид: http://www.medpulse.ru/image/encyclopedia/4/8/3/7483.jpeg , где Dr разность плотностей жидкости и пара. В первом приближении при К. в большом объеме насыщ. однородной маловязкой жидкости k=const (для воды, спирта и ряда др. сред k~0,14—0,16). В жидкости, осн. масса к-рой недогрета до т-ры К. на величину vкипж, параметр qкp~qкр,10(l+0,1 arп-0,75 К-1),
http://www.medpulse.ru/image/encyclopedia/4/8/4/7484.jpeg
Рис. 1. Зависимость плотности теплового потока от разности т-р

DТ=Ти—Ткип при кипении в большом объеме свободно конвектирующей жидкости: 1 - пузырьковый режим; 2 - переходный режим, характеризуемый сменой пузырьковой структуры на пов-сти нагрева сплошным паровым слоем (пленкой), от к-рого отрываются крупные паровые пузыри; 3 - пленочный режим, при к-ром происходит также радиационная теплоотдача от пов-сти нагрева к жидкости через паровой слой; прямая линия характеризует третий кризис кипения. где qкр,10 - плотность теплового потока при v=0, rп - отношение плотностей пара и жидкости, К=r/Cpv - тепловой критерий фазового перехода, Ср - массовая теплоемкость жидкости, ДжДкг.К). При низких давлениях возможен третий кризис К. в форме непосредственного перехода от режима конвективного движения жидкости к развитому пленочному К. Этот переход имеет цепной кавитационный механизм и реализуется при разностях т-р на пов-сти нагрева и К., удовлетворяющих условию: http://www.medpulse.ru/image/encyclopedia/4/8/5/7485.jpeg где lж и rж - соотв. теплопроводность и плотность перегретой жидкости, g - ускорение своб. падения. Четвертый кризис К. связан с возникновением термодинамич. неустойчивости жидкой фазы при достижении нек-рой критич. пов-сти нагрева. Критич. плотности тепловых потоков при К. в каналах существенно зависят от их форм и размеров, скорости течения жидкости и паросодержания потока. Универсальные закономерности здесь пока не установлены. При своб. растекании жидкости по горячей пов-сти возникает т. наз. сфероидальное состояние - жидкость зависает над пов-стью нагрева под влиянием динамич. сопротивления образующегося пара (рис. 2). Время полного испарения данного начального объема жидкости определяется т-рой нагревателя.
http://www.medpulse.ru/image/encyclopedia/4/8/6/7486.jpeg
Рис. 2. Формы испарения жидкости, свободно растекающейся по горячей пов-сти: а в капле, смачивающей не сильно нагретую пов-сть, происходит пузырьковое кипение; б т-ра стенки повысилась, и капля принимает сферич форму; в при увеличении т-ры пов-сти нагрева капля зависает в паровом слое; г - с возрастанием объема капля принимает форму плоского сфероида; д взвешенный в паровом слое большой сфероид, из к-poro пар эвакуируется через куполообразные пузыри.

В технол. процессах используются оба вида поверхностного К. Напр., пленочное К. реализуется при жидкостной закалке металлич. изделий. Проектирование теплообменных аппаратов с принудит, заданием теплового потока (с выделением джоулевой теплоты, теплоты р-ции спонтанного распада ядерного топлива, в парогенераторах и т.п.) проводится в расчете на пузырьковый режим К. теплоносителя. Возникновение пленочного К., напр. при сбросе давления, может вызвать аварийную ситуацию. Термогидродинамика К. р-ров и чистых жидкостей существенно различна. Так, для нек-рых р-ров и эмульсий критич. плотность теплового потока зависит от концентрации компонентов немонотонно, т.е. возможно существование экстремумов, причем максимум qкp, м. б. значительно больше, чем критич. значение теплового потока для каждого компонента в отдельности (рис. 3). При растворении в жидкости нелетучего в-ва снижается давление ее насыщ. пара и повышается Ткип. Это позволяет определять мол. м.
http://www.medpulse.ru/image/encyclopedia/4/8/7/7487.jpeg
Рис. 3. Зависимость qкр,1, от массовой концентрации спирта в воде при своб. конвекции в большом объеме и разных пов-стях нагрева: /, 3. 5 вертикальная пластина соотв. при давлениях 98,1100 и 3100 кПа; 2, 4, б проволока диаметром 0,5 мм при таких же давлениях.

растворенных в-в по вызываемому ими повышению Ткнп чистого р-рителя (см. Эиулиоскопия). Выпадение твердой фазы из р-ра на пов-сть нагрева приводит к снижению общего коэф. теплопередачи. В таких процессах температурный режим теплообменных аппаратов необходимо рассчитывать в соответствии с диаграммой состояния данного раствора. Режим К. существенно влияет на характер распространения акустич. волн в парожидкостной смеси. При этом волновые возмущения сопровождаются испарением и конденсацией на границах раздела фаз. Скорость звука в таких системах определяется соотношением между частотой волны и характерными временами процессов, обусловливающих фазовые переходы. Если частота настолько низка, что наложенное возмущение Dp вызывает изменение плотности Dr только за счет фазовых переходов, то скорость волны равна термодинамически равновесной скорости звука ае=http://www.medpulse.ru/image/encyclopedia/4/8/8/7488.jpeg, где R0 уд. газовая постоянная, Дж/(кг.К). Если частоты волн таковы, что фазовые переходы практически не успевают происходить, то звук распространяется со скоростью http://www.medpulse.ru/image/encyclopedia/4/8/9/7489.jpeg, где g - показатель адиабаты пара; j0 - объемное паросодержание смеси. Для реальных частот возмущений и состояний парожидкостной среды пузырьковой структуры скорость звука близка к значению aе, к-рое отличается от а0 примерно на два порядка. Так, для j0~0,1 величина ав=1 м/с при а0~100 м/с. Фазовые переходы влияют на динамику и структуру акустич. волн. Эти структуры обобщаются в виде спец. режимных карт Лит. Скрипов В.П.. Метастабильная жидкость, М, 1972; Кутателадзе СС. Основы теории теплообмена, 5 изд., М., 1979; Кутателадзе СС НакоряковВЕ.. Тепломассообмен и волны в газожидкосгных системах, Новосиб.. 1984. C C Кутателадзе


-капролактам Keтoальдегиды Кабачника-филдса реакция Кавитация Кадио-ходкевича реакция Кадионы Кадмий Кадмийорганические соединения Кадмия антимонид Кадмия галогениды Кадмия нитрат Кадмия оксид Кадмия селенид Кадмия сульфат Кадмия сульфид Кадмия теллурид Кадмия хлорид Казеин Каландрование полимеров Калий Калийная селитра Калийные удобрения Калифорний Калия бромид Калия гексацианоферраты Калия гидрокарбонат Калия гидроксид Калия дихромат Калия дицианоаурат(i) Калия иодид Калия карбонат Калия нитрат Калия оксид Калия перманганат Калия пероксодикарбонат Калия пероксосульфаты Калия сульфат Калия сульфиды Калия фосфаты Калия фторид Калия хлорид Калия цианат Калия цианид Калия этилксантогенат Каломель Каломельный электрод Калориметрия Кальмодулин Кальциевая селитра Кальций Кальцийорганические соединения Кальцитонин Кальциферолы Кальция алюминаты Кальция бораты Кальция вольфраматы Кальция галогениды Кальция гидроксид Кальция гипохлорит Кальция карбид Кальция карбонат Кальция нитрат Кальция оксид Кальция силикаты Кальция сульфат Кальция фосфаты Кальция фторид Кальция хлорид Кальция цианамид Каменноугольная смола Каменноугольные масла Каменные угли Камфан Камфен Камфеновые перегруппировки Камфора Канатные смазки Канифоль Канниццаро реакция Канцерогенные вещества Каолин Капельный анализ Капиллярная конденсация Капиллярная хроматография Капиллярные явления Капиллярный осмос Каплеулавливание Каприловая кислота Капрон Капроновая кислота Капсаицин Капсулирование Каптакс Карбазол Карбамид Карбамидные смолы Карбаминовая кислота Карбанионы Карбеновые комплексы переходных металлов Карбены Карбиды Карбиламины Карбин Карбиновые комплексы переходных металлов Карбитолы Карбкатионы Карбодиимиды Карбодифосфораны Карбоксилатные каучуки Карбоксилирование Карбоксиметилцеллюлоза Карбоксипептидазы Карбоксиэстеразы Карболины Карбонаты неорганические Карбонаты органические Карбонаты природные Карбонизация Карбонилирование Карбонилфторид Карбонилы металлов Карбонильные соединения Карбония ионы Карбоновые кислоты Карбопласты Карборансодержащие полимеры Карбораны Карборунд Карбоциклические соединения Карвон Кардовые полимеры Карены Кариофиллен Кариуса метод Каркасные соединения Карнаубский воск Карнитин Карнозин Каротиноиды Каррагинаны Касторовое масло Катаболизм Катализ Катализаторы Катализаторы гидрирования Катализаторы дегидрирования Катализаторы окисления Катализаторы полимеризации Каталитический крекинг Каталитический реформинг Каталитических реакций кинетика Катапины Катенаны Катепсины Катехоламины Катион-радикалы Катиониты Катионная полимеризация Катионные красители Катионообменные смолы Катионотропные перегруппировки Катионы Катодная защита Катодолюминесцентный микроанализ Каустобиолиты Каучук натуральный Каучуки синтетические Качественный анализ Квадрупольный момент Квазикристалл Квазирацематы Квазистационарности приближение Квантовая механика Квантовая химия Квантовое состояние Квантовые переходы Квантовый выход Кварц Кварцевое стекло Квасцы Кверцетин Кедровое масло Керамика Кератины Кермель Керметы Керосин Керра эффект Кетали Кетены Кетимины Кетокарбoновые кислoты Кетокислоты Кетон малины Кетоны Кибернетика Кижнера реакция Кижнера-вольфа реакция Килиани-фишера реакция Кинe-замещeние Кинетика химическая Кинетическая кривая Кинетическая теория газов Кинетические методы анализа Кинетический изотопный эффект Кинетическое уравнение Кинины Киноплёнки Кипение Кипреналь Кипящий слой Кирсанова реакция Кирхгофа уравнение Кислoтно-оснoвное титрование Кислoтно-основнoй катализ Кислород Кислорода фториды Кислородный индекс Кислотное число Кислотные красители Кислотоупoрные прирoдные материалы Кислоты и основания Кислоты неорганические Клeя-киннера-пeррена реакция Клайзена конденсация Клайзена перегруппировка Клайзена-шмидта реакция Клапейрона-клаузиуса уравнение Клапейрона-менделеева уравнение Кларки химических элементов Классификация Классификация гидравлическая Кластеры Клатраты Клеевые краски Клеи природные Клеи синтетические Клей Клей неорганические Клемменсена реакция Клетки эффект Клешневидные соединения Клофелин Клофибрат Кнорра реакция Кнёвенагеля реакция Коагулянты Коагуляция Коалесценция Коацервация Кобальта ацетат Кобальта галогениды Кобальта гидроксиды Кобальта карбонаты Кобальта карбонилы Кобальта нитраты Кобальта оксиды Кобальта сплавы Кобальта сульфаты Кобальта хлориды Кобальтовые удобрения Кобальторганические соединения Кобамидные коферменты Ковалентная связь Ковалентные кристаллы Ковалентные радиусы Ковар Когезия Кодеин Кодон Кожа Кожа искусственная Койевая кислота Кокаин Кокосовое масло Кокс каменноугольный Кокс нефтяной Кокс пековый Коксование Коксовое число Коксохимия Коксуемость углей Колебательные реакции Колебательные спектры Количественный анализ Коллoидные раствoры Коллаген Коллидины Коллоидная химия Коллоидные системы Коллоксилин Колориметрический анализ Колхициновые алкалоиды Кольбе реакции Кольбе шмитта реакция Кольрауша закон Комбинационного рассеяния спектроскопия Компаунды полимерные Компенсационный эффект Комплексные соединения Комплексометрия Комплексонометрия Комплексоны Комплексообразующие ионообменные смолы Комплемент Комплементарность Композиты Композиционные материалы Компонент системы Компрессорные масла Компрессорные машины Компьютерный синтез Конго красный Кондакова реакция Конденсации реакции Конденсация Конденсация фракционная Кондуктометрия Конкурирующих реакций метод Коновалова законы Коновалова реакция Конопляное масло Консервационные масла Консервационные смазки Консистентные смазки Константа равновесия Константа скорости Константан Конструкционная керамика Контакт петрова Контактная очистка Конфигурационного взаимодействия метод Конфигурация стереохимическая Конформации молекулы Конформационные эффекты Конформационный анализ Концентрация Концентрирование Координата реакции Координациoнно-иoнная полимеризация Координационная связь Координационное число Координационные полимеры Координационные полиэдры Координационные соединения Копалы Кордиты Коричный альдегид Коричный спирт Кормовые фосфаты Корреляционные соотношения Корреляция конфигураций Корриноиды Коррозионная усталость Коррозионностойкие материалы Коррозионные испытания Коррозия металлов Коррозия под напряжением Кортикоиды Коршун климовой метод Космические смазки Космохимия Котельные топлива Коттона эффект Кофеин Кофермент Коферменты Коха-хаафа реакция Коэрцитивная сила Крапплак Красители природные Красители синтетические Краски Красуского правило Кратные связи Краун-эфиры Крахмал Крашение бумаги Крашение волокон Крашение древесины Крашение кожи Крашение меха Крашение оксидированного алюминия Крашение пластических масс Крашение резино-технических изделий Креатинфосфорная кислота Кребса цикл Крезолы Крекинг Кремнефтористоводородная кислота Кремниевые кислоты Кремний Кремнийорганические жидкости Кремнийорганические каучуки Кремнийорганические лаки Кремнийорганические полимеры Кремнийорганические соединения Кремнийэлементоорганические соединения Кремния диоксид Кремния иодиды Кремния карбид Кремния нитрид Кремния оксид Кремния фториды Кремния хлориды Криоскопия Криохимия Криптанды Криптон Криптона дифторид Кристаллизационные методы разделения смесей Кристаллизация Кристаллическая структура Кристаллический фиолетовый Кристаллического поля теория Кристаллическое состояние Кристаллическое состояние полимеров Кристаллогидраты Кристаллосольваты Кристаллофосфоры Кристаллохимия Кристаллы Критические явления Критическое состояние Кровезаменители Кроны Кротоновая кислота Кротоновая конденсация Кротоновый альдегид Круговой дихроизм Крёнке реакция Ксаитемовые красители Ксантин Ксантинола никотинат Ксантогенаты Ксантопротеиновая реакция Ксантотоксин Ксенон Ксенона фториды Ксиленоловый оранжевый Ксилидины Ксилилендиамины Ксилит Ксилолы Кубовые красители Кубогены Кубозоли Кукурузное масло Кулонометрия Кумарин Кумароно-инденовые смолы Кумилгидропероксид Кумилпероксид Кумол Кумулены Кунжутное масло Купманса теорема Купферон Курареподобные средства Курарин Курнакова соединения Курциуса реакция Курчатовий Кучерова реакция Кьельдаля метод Кэмпса реакция Кэрролла-каймела реакция Кюри точка Кюрий Кёнигса-кнорра реакция
www.pravda.ru: Ирак на пороге новой войны?
02.08.2017
… в предстоящей игре. В складывающихся условиях и при существующих противоречиях все это не обещает ничего доброго. К сожалению, после "победы" в Мосуле обстановка в Ираке может вновь достичь точки кипения уже осенью этого года. …
www.missus.ru: Гречневый супчик с фрикадельками
20.07.2017
… Опустить фрикадельки в кипящую воду (0.7л), довести до кипения, положить остатки моркови и лука, варить минут 15, затем добавить картофель и гречку, чуть посолить и варить еще минут 20 (время указано после закипания). …
www.missus.ru: Нутелла в домашних условиях
12.07.2017
… Доводим смесь до кипения на слабом огне, постоянно помешивая, чтобы не подгорела и не пристала ко дну кастрюлю. …
www.missus.ru: Торт со сгущенкой на сковороде
25.06.2017
… заварной крем: в кастрюльку влить молоко, добавить яйца, сахар, ванильный сахар и муку. Всё перемешать венчиком и поставить на огонь. Довести крем до кипения, при постоянном помешивании. …
www.missus.ru: Блинчики "Ажурные"
19.06.2017
… доводим до кипения и тоненькой струйкой вливаем в массу, все время помешивая (так мы завариваем наше тесто.). Если тесто получилось жидким на ваш взгляд, добавьте немного муки (не волнуйтесь, основная масса уже …
www.missus.ru: Сырники с молочным соусом
17.06.2017
… помешивать, чтобы мука не подгорала. Муку охладить и влить две-три ложки молока; чтобы избавиться от комочков, всё хорошенько перемешать. Остальное молоко в ковшике смешать с сахаром и довести до кипения. В кипящее молоко аккуратно ввести мучную смесь, размешать и готовить соус до …
www.missus.ru: Супы на скорую руку
23.05.2017
… жарим вместе в кастрюле, добавляем еще и помидорки. Заливаем эту поджарку водой. Добавляем чечевицу, красную, которая быстро разваривается, и кубики из нескольких картофелин. Все это доводим до кипения, немного поварим, добавим наши любимые специи, а перед подачей на стол, потрем сыр прямо в теплый супчик, чтобы сыр успел расплавиться. И также, можем сделать из него суп-пюре. …
www.missus.ru: Пятнадцать способов облегчить домашние дела с помощью соли
07.05.2017
… Для увеличения скорости приготовления различных блюд на пару, стоит посолить воду, тем самым повысив температуру кипения воды. …
www.missus.ru: Вкусный и полезный шоколад для деток
12.04.2017
… маленьком огне, подогреваем сливки не доводя до кипения. Растворяем в них сахар и ваниль. Добавляем сливочное масло и корицу. …
www.missus.ru: Исцеляющий настой на основе овса
01.04.2017
… один стакан овса залить 1.5 литрами холодной воды, после чего довести состав до кипения, дать остыть в течение четырех часов. После чего добавить стружку из цедры половины лимона, процедить, добавить одну столовую ложку меда и лимонный сок из половины лимона. …
www.missus.ru: В кожуре мандарина - огромная сила
27.03.2017
… При бессоннице, нервном напряжении, повышенном артериальном давлении, сердцебиении. 1 стакан свежей измельченной кожуры залейте 3 л кипятка, снова доведите до кипения, настаивайте под крышкой час, процедите и отожмите сырье. Настой вылейте в ванну. Принимайте теплые ванны (37-38 град) по 15 мин., за час до сна, через …
www.missus.ru: Десять кулинарных подсказок для любителей итальянской кухни
05.03.2017
… Например, выложите несколько кубиков сахара в центр блюда и подожгите его. Или другой способ: смажьте края сковороды или сотейника солью и влейте в посуду ½ стакана уксуса. Доведите его до кипения — и запаха как не бывало. …
www.missus.ru: Волшебный суп для похудения
05.03.2017
… нарезать, залить 3 литрами воды, добавить соль по вкусу и немного черного молотого перца. Поставить кастрюлю на огонь, довести до кипения и варить 10 мин., после этого делаем огонь более слабым и продолжаем варить до тех пор, пока все овощи не станут мягкими. …
www.missus.ru: Луковый суп
04.03.2017
… сковороде. Как только она начинает менять цвет, высыпьте ее в кастрюлю с луком. Смешайте вино с сахаром и влейте в кастрюлю. Пару минут пусть эта смесь покипит. Затем добавьте бульон. Доведите до кипения и варите 15-20 минут на маленьком огне. …
www.missus.ru: Как вылечить молочницу народными средствами
21.02.2017
… и выделений можно уже после проведения первой процедуры. Такой отвар оказывает противовоспалительное и обеззараживающее действие. Необходимо взять по две ложки травы, залить 2 л воды, довести до кипения, выдержать 10 минут, процедить и применять для лечения. Спринцевание травяными отварами желательно проводить утром и вечером. Для лучшего эффекта можно добавить ложку соды, так быстрее наступит …