Словарь научных терминов
Кипение
КИПЕНИЕ, переход жидкости в пар, образующий в ее объеме структурные элементы (паровые пузыри, пленки, струи); фазовый переход первого рода. На границе раздела пар жидкость фазовый переход при К. осуществляется путем испарения. Пузырьки растут вследствие испарения в них жидкости, всплывают, и содержащийся в них насыщ. пар переходит в паровую фазу над жидкостью. К. - одно из фундам. физ. явлений, используемое во мн. процессах хим. технологии. Особенность последних состоит в широком применении р-ров и смесей разл. в-в в качестве рабочих тел. Сложная термогидродинамика К. чистых жидкостей и р-ров оказывает существ. влияние на конструкции и габаритные размеры технол. аппаратов. Работа, затрачиваемая на увеличение объема и поверхностной энергии сферич. пузыря радиуса R, определяется по ф-ле: L0=-(4/3)pR3Dp+4pЛ2s, где Dp - разность давлений в пузыре и окружающей жидкости, Па; а коэф. поверхностного натяжения, Н/м. Миним. радиус возникающего парового пузыря (зародыша) Rмин=кипs/[rrпж-Tкип)], где rп - плотность пара, кг/м3; r - теплота парообразования, Дж/кг (Тж и Ткип пояснены ниже). Местами, в к-рых возникают зародыши паровой фазы, могут служить газообразные включения, твердые частицы, находящиеся в жидкости, микровпадины на пов-стях нагрева и др. Работа, необходимая для образования парового "пятна" на стенке и границы раздела пар - жидкость: L=L0(0,5+0,75cosQ-0,25cos3Q), где Q - краевой угол смачивания. При Q=180° работа L=0, т.е. на абс. смачиваемой пов-сти образуется сферический пузырь, как и в объеме жидкости. С понижением давления уменьшается плотность пара, возрастает миним. радиус образования зародышей, пов-сть нагрева обедняется центрами генерации паровых пузырей. Это приводит к нестабильному К., при к-ром происходит конвективное движение перегретой жидкости, сменяемое бурным вскипанием, инициированным одной или неск. микровпадинами подходящего радиуса. С понижением т-ры при вскипании жидкости эти микровпадины "выключаются", и снова повторяется цикл перегрева движущейся конвективно жидкости. Т-ра, при к-рой происходит К. жидкости, находящейся под постоянным давлением (напр., атмосферным), наз. т-рой К. (Ткип). В качестве Tкип принимают т-ру насыщ. пара (т-ру насыщения) над плоской пов-стью жидкости, кипящей при данном давлении. Т-ра К. при атм. давлении приводится обычно как одна из осн. физ.-хим. характеристик химически чистого в-ва. С возрастанием давления Ткип увеличивается (см. Клапейрона - Клаузиуса уравнение). Предельная Ткип - критич. т-ра в-ва (см. Критические явления). Понижение Ткип с уменьшением внеш. давления лежит в основе определения барометрич. давления. Различают объемное и поверхностное К. Объемное К.-образование паровых пузырей внутри массы жидкости, находящейся в перегретом, или метастабильном, состоянии при Тжкип, где Тж - т-ра перегретой жидкости. Такое К. реализуется в т. наз. аппаратах объемного вскипания, эффективных для обезвреживания и утилизации агрессивных жидкостей, в частности дистиллерных в содовом производстве. Поверхностное К.-парообразование на пов-сти нагрева, имеющей т-ру Тнкип. Такое К. возможно и в случае, когда т-ра осн. массы жидкости Тжкип, но в окрестности пов-сти нагрева образовался пограничный слой, перегретый до т-ры, превышающей Ткип. Осн. виды поверхностного К. - пузырьковое и пленочное. Пузырьковое К. возникает при умеренных тепловых потоках на микровпадинах пов-сти, смачиваемой жидкостью. Пар генерируется на действующих центрах парообразования в виде цепочек пузырей. Благодаря циркуляции жидкости, непосредственно контактирующей с пов-стью нагрева, обеспечивается высокая интенсивность теплоотдачи - в данном случае коэф. теплоотдачи a[Вт/(м2.К)] пропорционален плотности теплового потока q(Вт/м2) в степени ~0,7. Пленочное К. возникает на несмачиваемых пов-стях нагрева (напр., К. ртути в стеклянной трубке); на смачиваемых пов-стях пузырьковое К. переходит в пленочное (первый кризис К.) при достижении первой критич. плотности теплового потока qкр,1. Интенсивность теплоотдачи при пленочном К. значительно меньше, чем при пузырьковом, что обусловлено малыми значениями коэф. теплопроводности l[Вт/(м.К)] и плотности пара по сравнению с их значениями для жидкости. При ламинарном движении пара в пленке a~q-O,25, при турбулентном движении интенсивность теплоотдачи мало зависит от плотности теплового потока и размеров нагревателя. Повышение давления приводит к возрастанию а в обоих случаях. Разрушение пленочного К. и восстановление пузырькового (второй кризис К.) на смачиваемых пов-стях происходит при второй критич. плотности теплового потока qкр,2[qкр.1 (рис. 1). Кризисы К. определяются преим. гидродинамич. механизмом потери устойчивости структуры пристенного двухфазного пограничного слоя. Критерий гидродинамич. устойчивости К. имеет вид: http://www.medpulse.ru/image/encyclopedia/4/8/3/7483.jpeg , где Dr разность плотностей жидкости и пара. В первом приближении при К. в большом объеме насыщ. однородной маловязкой жидкости k=const (для воды, спирта и ряда др. сред k~0,14—0,16). В жидкости, осн. масса к-рой недогрета до т-ры К. на величину vкипж, параметр qкp~qкр,10(l+0,1 arп-0,75 К-1),
http://www.medpulse.ru/image/encyclopedia/4/8/4/7484.jpeg
Рис. 1. Зависимость плотности теплового потока от разности т-р

DТ=Ти—Ткип при кипении в большом объеме свободно конвектирующей жидкости: 1 - пузырьковый режим; 2 - переходный режим, характеризуемый сменой пузырьковой структуры на пов-сти нагрева сплошным паровым слоем (пленкой), от к-рого отрываются крупные паровые пузыри; 3 - пленочный режим, при к-ром происходит также радиационная теплоотдача от пов-сти нагрева к жидкости через паровой слой; прямая линия характеризует третий кризис кипения. где qкр,10 - плотность теплового потока при v=0, rп - отношение плотностей пара и жидкости, К=r/Cpv - тепловой критерий фазового перехода, Ср - массовая теплоемкость жидкости, ДжДкг.К). При низких давлениях возможен третий кризис К. в форме непосредственного перехода от режима конвективного движения жидкости к развитому пленочному К. Этот переход имеет цепной кавитационный механизм и реализуется при разностях т-р на пов-сти нагрева и К., удовлетворяющих условию: http://www.medpulse.ru/image/encyclopedia/4/8/5/7485.jpeg где lж и rж - соотв. теплопроводность и плотность перегретой жидкости, g - ускорение своб. падения. Четвертый кризис К. связан с возникновением термодинамич. неустойчивости жидкой фазы при достижении нек-рой критич. пов-сти нагрева. Критич. плотности тепловых потоков при К. в каналах существенно зависят от их форм и размеров, скорости течения жидкости и паросодержания потока. Универсальные закономерности здесь пока не установлены. При своб. растекании жидкости по горячей пов-сти возникает т. наз. сфероидальное состояние - жидкость зависает над пов-стью нагрева под влиянием динамич. сопротивления образующегося пара (рис. 2). Время полного испарения данного начального объема жидкости определяется т-рой нагревателя.
http://www.medpulse.ru/image/encyclopedia/4/8/6/7486.jpeg
Рис. 2. Формы испарения жидкости, свободно растекающейся по горячей пов-сти: а в капле, смачивающей не сильно нагретую пов-сть, происходит пузырьковое кипение; б т-ра стенки повысилась, и капля принимает сферич форму; в при увеличении т-ры пов-сти нагрева капля зависает в паровом слое; г - с возрастанием объема капля принимает форму плоского сфероида; д взвешенный в паровом слое большой сфероид, из к-poro пар эвакуируется через куполообразные пузыри.

В технол. процессах используются оба вида поверхностного К. Напр., пленочное К. реализуется при жидкостной закалке металлич. изделий. Проектирование теплообменных аппаратов с принудит, заданием теплового потока (с выделением джоулевой теплоты, теплоты р-ции спонтанного распада ядерного топлива, в парогенераторах и т.п.) проводится в расчете на пузырьковый режим К. теплоносителя. Возникновение пленочного К., напр. при сбросе давления, может вызвать аварийную ситуацию. Термогидродинамика К. р-ров и чистых жидкостей существенно различна. Так, для нек-рых р-ров и эмульсий критич. плотность теплового потока зависит от концентрации компонентов немонотонно, т.е. возможно существование экстремумов, причем максимум qкp, м. б. значительно больше, чем критич. значение теплового потока для каждого компонента в отдельности (рис. 3). При растворении в жидкости нелетучего в-ва снижается давление ее насыщ. пара и повышается Ткип. Это позволяет определять мол. м.
http://www.medpulse.ru/image/encyclopedia/4/8/7/7487.jpeg
Рис. 3. Зависимость qкр,1, от массовой концентрации спирта в воде при своб. конвекции в большом объеме и разных пов-стях нагрева: /, 3. 5 вертикальная пластина соотв. при давлениях 98,1100 и 3100 кПа; 2, 4, б проволока диаметром 0,5 мм при таких же давлениях.

растворенных в-в по вызываемому ими повышению Ткнп чистого р-рителя (см. Эиулиоскопия). Выпадение твердой фазы из р-ра на пов-сть нагрева приводит к снижению общего коэф. теплопередачи. В таких процессах температурный режим теплообменных аппаратов необходимо рассчитывать в соответствии с диаграммой состояния данного раствора. Режим К. существенно влияет на характер распространения акустич. волн в парожидкостной смеси. При этом волновые возмущения сопровождаются испарением и конденсацией на границах раздела фаз. Скорость звука в таких системах определяется соотношением между частотой волны и характерными временами процессов, обусловливающих фазовые переходы. Если частота настолько низка, что наложенное возмущение Dp вызывает изменение плотности Dr только за счет фазовых переходов, то скорость волны равна термодинамически равновесной скорости звука ае=http://www.medpulse.ru/image/encyclopedia/4/8/8/7488.jpeg, где R0 уд. газовая постоянная, Дж/(кг.К). Если частоты волн таковы, что фазовые переходы практически не успевают происходить, то звук распространяется со скоростью http://www.medpulse.ru/image/encyclopedia/4/8/9/7489.jpeg, где g - показатель адиабаты пара; j0 - объемное паросодержание смеси. Для реальных частот возмущений и состояний парожидкостной среды пузырьковой структуры скорость звука близка к значению aе, к-рое отличается от а0 примерно на два порядка. Так, для j0~0,1 величина ав=1 м/с при а0~100 м/с. Фазовые переходы влияют на динамику и структуру акустич. волн. Эти структуры обобщаются в виде спец. режимных карт Лит. Скрипов В.П.. Метастабильная жидкость, М, 1972; Кутателадзе СС. Основы теории теплообмена, 5 изд., М., 1979; Кутателадзе СС НакоряковВЕ.. Тепломассообмен и волны в газожидкосгных системах, Новосиб.. 1984. C C Кутателадзе


-капролактам Keтoальдегиды Кабачника-филдса реакция Кавитация Кадио-ходкевича реакция Кадионы Кадмий Кадмийорганические соединения Кадмия антимонид Кадмия галогениды Кадмия нитрат Кадмия оксид Кадмия селенид Кадмия сульфат Кадмия сульфид Кадмия теллурид Кадмия хлорид Казеин Каландрование полимеров Калий Калийная селитра Калийные удобрения Калифорний Калия бромид Калия гексацианоферраты Калия гидрокарбонат Калия гидроксид Калия дихромат Калия дицианоаурат(i) Калия иодид Калия карбонат Калия нитрат Калия оксид Калия перманганат Калия пероксодикарбонат Калия пероксосульфаты Калия сульфат Калия сульфиды Калия фосфаты Калия фторид Калия хлорид Калия цианат Калия цианид Калия этилксантогенат Каломель Каломельный электрод Калориметрия Кальмодулин Кальциевая селитра Кальций Кальцийорганические соединения Кальцитонин Кальциферолы Кальция алюминаты Кальция бораты Кальция вольфраматы Кальция галогениды Кальция гидроксид Кальция гипохлорит Кальция карбид Кальция карбонат Кальция нитрат Кальция оксид Кальция силикаты Кальция сульфат Кальция фосфаты Кальция фторид Кальция хлорид Кальция цианамид Каменноугольная смола Каменноугольные масла Каменные угли Камфан Камфен Камфеновые перегруппировки Камфора Канатные смазки Канифоль Канниццаро реакция Канцерогенные вещества Каолин Капельный анализ Капиллярная конденсация Капиллярная хроматография Капиллярные явления Капиллярный осмос Каплеулавливание Каприловая кислота Капрон Капроновая кислота Капсаицин Капсулирование Каптакс Карбазол Карбамид Карбамидные смолы Карбаминовая кислота Карбанионы Карбеновые комплексы переходных металлов Карбены Карбиды Карбиламины Карбин Карбиновые комплексы переходных металлов Карбитолы Карбкатионы Карбодиимиды Карбодифосфораны Карбоксилатные каучуки Карбоксилирование Карбоксиметилцеллюлоза Карбоксипептидазы Карбоксиэстеразы Карболины Карбонаты неорганические Карбонаты органические Карбонаты природные Карбонизация Карбонилирование Карбонилфторид Карбонилы металлов Карбонильные соединения Карбония ионы Карбоновые кислоты Карбопласты Карборансодержащие полимеры Карбораны Карборунд Карбоциклические соединения Карвон Кардовые полимеры Карены Кариофиллен Кариуса метод Каркасные соединения Карнаубский воск Карнитин Карнозин Каротиноиды Каррагинаны Касторовое масло Катаболизм Катализ Катализаторы Катализаторы гидрирования Катализаторы дегидрирования Катализаторы окисления Катализаторы полимеризации Каталитический крекинг Каталитический реформинг Каталитических реакций кинетика Катапины Катенаны Катепсины Катехоламины Катион-радикалы Катиониты Катионная полимеризация Катионные красители Катионообменные смолы Катионотропные перегруппировки Катионы Катодная защита Катодолюминесцентный микроанализ Каустобиолиты Каучук натуральный Каучуки синтетические Качественный анализ Квадрупольный момент Квазикристалл Квазирацематы Квазистационарности приближение Квантовая механика Квантовая химия Квантовое состояние Квантовые переходы Квантовый выход Кварц Кварцевое стекло Квасцы Кверцетин Кедровое масло Керамика Кератины Кермель Керметы Керосин Керра эффект Кетали Кетены Кетимины Кетокарбoновые кислoты Кетокислоты Кетон малины Кетоны Кибернетика Кижнера реакция Кижнера-вольфа реакция Килиани-фишера реакция Кинe-замещeние Кинетика химическая Кинетическая кривая Кинетическая теория газов Кинетические методы анализа Кинетический изотопный эффект Кинетическое уравнение Кинины Киноплёнки Кипение Кипреналь Кипящий слой Кирсанова реакция Кирхгофа уравнение Кислoтно-оснoвное титрование Кислoтно-основнoй катализ Кислород Кислорода фториды Кислородный индекс Кислотное число Кислотные красители Кислотоупoрные прирoдные материалы Кислоты и основания Кислоты неорганические Клeя-киннера-пeррена реакция Клайзена конденсация Клайзена перегруппировка Клайзена-шмидта реакция Клапейрона-клаузиуса уравнение Клапейрона-менделеева уравнение Кларки химических элементов Классификация Классификация гидравлическая Кластеры Клатраты Клеевые краски Клеи природные Клеи синтетические Клей Клей неорганические Клемменсена реакция Клетки эффект Клешневидные соединения Клофелин Клофибрат Кнорра реакция Кнёвенагеля реакция Коагулянты Коагуляция Коалесценция Коацервация Кобальта ацетат Кобальта галогениды Кобальта гидроксиды Кобальта карбонаты Кобальта карбонилы Кобальта нитраты Кобальта оксиды Кобальта сплавы Кобальта сульфаты Кобальта хлориды Кобальтовые удобрения Кобальторганические соединения Кобамидные коферменты Ковалентная связь Ковалентные кристаллы Ковалентные радиусы Ковар Когезия Кодеин Кодон Кожа Кожа искусственная Койевая кислота Кокаин Кокосовое масло Кокс каменноугольный Кокс нефтяной Кокс пековый Коксование Коксовое число Коксохимия Коксуемость углей Колебательные реакции Колебательные спектры Количественный анализ Коллoидные раствoры Коллаген Коллидины Коллоидная химия Коллоидные системы Коллоксилин Колориметрический анализ Колхициновые алкалоиды Кольбе реакции Кольбе шмитта реакция Кольрауша закон Комбинационного рассеяния спектроскопия Компаунды полимерные Компенсационный эффект Комплексные соединения Комплексометрия Комплексонометрия Комплексоны Комплексообразующие ионообменные смолы Комплемент Комплементарность Композиты Композиционные материалы Компонент системы Компрессорные масла Компрессорные машины Компьютерный синтез Конго красный Кондакова реакция Конденсации реакции Конденсация Конденсация фракционная Кондуктометрия Конкурирующих реакций метод Коновалова законы Коновалова реакция Конопляное масло Консервационные масла Консервационные смазки Консистентные смазки Константа равновесия Константа скорости Константан Конструкционная керамика Контакт петрова Контактная очистка Конфигурационного взаимодействия метод Конфигурация стереохимическая Конформации молекулы Конформационные эффекты Конформационный анализ Концентрация Концентрирование Координата реакции Координациoнно-иoнная полимеризация Координационная связь Координационное число Координационные полимеры Координационные полиэдры Координационные соединения Копалы Кордиты Коричный альдегид Коричный спирт Кормовые фосфаты Корреляционные соотношения Корреляция конфигураций Корриноиды Коррозионная усталость Коррозионностойкие материалы Коррозионные испытания Коррозия металлов Коррозия под напряжением Кортикоиды Коршун климовой метод Космические смазки Космохимия Котельные топлива Коттона эффект Кофеин Кофермент Коферменты Коха-хаафа реакция Коэрцитивная сила Крапплак Красители природные Красители синтетические Краски Красуского правило Кратные связи Краун-эфиры Крахмал Крашение бумаги Крашение волокон Крашение древесины Крашение кожи Крашение меха Крашение оксидированного алюминия Крашение пластических масс Крашение резино-технических изделий Креатинфосфорная кислота Кребса цикл Крезолы Крекинг Кремнефтористоводородная кислота Кремниевые кислоты Кремний Кремнийорганические жидкости Кремнийорганические каучуки Кремнийорганические лаки Кремнийорганические полимеры Кремнийорганические соединения Кремнийэлементоорганические соединения Кремния диоксид Кремния иодиды Кремния карбид Кремния нитрид Кремния оксид Кремния фториды Кремния хлориды Криоскопия Криохимия Криптанды Криптон Криптона дифторид Кристаллизационные методы разделения смесей Кристаллизация Кристаллическая структура Кристаллический фиолетовый Кристаллического поля теория Кристаллическое состояние Кристаллическое состояние полимеров Кристаллогидраты Кристаллосольваты Кристаллофосфоры Кристаллохимия Кристаллы Критические явления Критическое состояние Кровезаменители Кроны Кротоновая кислота Кротоновая конденсация Кротоновый альдегид Круговой дихроизм Крёнке реакция Ксаитемовые красители Ксантин Ксантинола никотинат Ксантогенаты Ксантопротеиновая реакция Ксантотоксин Ксенон Ксенона фториды Ксиленоловый оранжевый Ксилидины Ксилилендиамины Ксилит Ксилолы Кубовые красители Кубогены Кубозоли Кукурузное масло Кулонометрия Кумарин Кумароно-инденовые смолы Кумилгидропероксид Кумилпероксид Кумол Кумулены Кунжутное масло Купманса теорема Купферон Курареподобные средства Курарин Курнакова соединения Курциуса реакция Курчатовий Кучерова реакция Кьельдаля метод Кэмпса реакция Кэрролла-каймела реакция Кюри точка Кюрий Кёнигса-кнорра реакция
www.missus.ru: Форель под чесночным соусом, запеченная на картофельной "подушке"
15.01.2017
… Как только соус загустеет, добавьте немного кипячёной воды и специи: соль, лавровый лист и смесь перцев. Доведите соус до кипения, выключите и накройте крышкой. …
www.missus.ru: Легкий рецепт идеального торта "Наполеон"
11.01.2017
… Оставшееся молоко (0,5 л) вскипятить и влить в массу, помешивая. Довести до кипения. Остудить. Масло взбить с 2 ст. сахара. По ложке добавлять заварной крем и взбивать на средней скорости каждый раз до гладкости. …
www.missus.ru: Профитроли — заварные пирожные
08.01.2017
… Масло и воду довести в кастрюле до кипения. Постепенно добавить муку, подсыпая понемногу и постоянно перемешивая. Снять с огня. Немного остудить. …
www.missus.ru: Мандариновый мармелад
26.12.2016
… Влить сок с агаром, довести до кипения и можно разливать по формочкам или в одну большую форму. …
www.missus.ru: Сыр "Филадельфия" в домашних условиях
13.12.2016
… выливаем в кастрюлю и ставим на плиту, на средний огонь и постоянно помешивая, добавляем соль, доводим до кипения. Сразу после закипания добавляем кефир и перемешиваем, пока масса не свернется. Эту массу откидываем на марлю, затем подвешиваем на марле над раковиной на 15 минут и даем стечь сыворотке. Яйцо и …
www.missus.ru: 6 вкусных соусов
02.12.2016
… 1 ст. л. томатного пюре и соевого соуса, 3 ст. л. апельсинового сока. Отдельно смешать 1 ч. л. кукурузной муки с 4 ст. л. воды и добавить к смеси. Поставить получившийся соус на огонь и довести до кипения, постоянно помешивая. Подавать соус нужно горячим. …
www.missus.ru: Оливковое масло - жидкое золото для нашей красоты
26.11.2016
… секущихся кончиков: 2 ст. л оливкового масла смешиваем с 1 ст. ложки уксуса и 1 яйцом, нагреваем, не доводя до кипения . Наносим на кончики волос и смываем через 30 минут. …
www.missus.ru: Подборка самых вкусных щей
25.11.2016
… Отварной картофель нарезать кубиками, смешать со щавелем, залить горячим отваром, довести до кипения и варить несколько минут. …
www.missus.ru: Блюда с шампиньонами
21.11.2016
… Мелко нарезаем курочку, грибы и лук, обжариваем их до готовности с использованием растительного масла, солим, перчим, добавляем сметану, доводим до кипения. Снимаем с огня. …
www.missus.ru: Советы на заметку
18.11.2016
… Картофельное пюре не стоит разбавлять холодным молоком, от этого пюре приобретает серый цвет и в нем образуются комки. Прежде чем разбавлять пюре, нужно нагреть молоко до кипения и добавлять постепенно, постоянно перемешивая. …
www.missus.ru: Блюда из свинины
15.11.2016
… воду. Кладём соль в соотношении: на 1 л воды — 1 ст. л. соли. А также лавровый лист и перец горошком. Можно добавить гвоздику, кориандр и другие ваши любимые специи. Маринад доводим до кипения, варим минут 5-7 и выключаем. Затем полностью охлаждаем. …
www.missus.ru: 5 самых простых кремов для тортов и других десертов
12.11.2016
… желтки мы растираем с сахаром, ванилином и мукой до однородной массы. Доводим наше молоко до кипения. Вливаем горячее молоко в яичную массу, перемешиваем.Полученную массу ставим на огонь и варим до загустения. Готово! …
www.missus.ru: 5 рецептов сгущёнки в домашних условиях
10.11.2016
… молоко в кастрюлю с толстым дном , засыпьте стакан сахара , растворите его , и доведите молоко до кипения на среднем огне. Уменьшите огонь и варите , периодически помешивая, пока молоко не уменьшится на две трети от начального объема. Масса должна стать приятного кремового цвета и немного густоватой. …
www.missus.ru: Избавляемся от дневной сонливости навсегда
09.11.2016
… воду до кипения и добавляем туда все ингредиенты кроме меда, варим 3-4 минуты на среднем огне, а затем даем немного остыть. Мед добавляем только в теплый …
www.missus.ru: Топ-5 самых вкусных супов
31.10.2016
… Бульон довести до кипения и опустить в него рис и пучок петрушки. Варить при слабом кипении 10 минут. …