Словарь научных терминов

Пирометаллургия

ПИРОМЕТАЛЛУРГИЯ (от греч. ру-огонь и металлургия), совокупность высокотемпературных процессов получения и рафинирования металлов и их сплавов. До кон. 19 в. металлы получали только с помощью пирометаллургич. процессов; в настоящее время, несмотря на быстрый прогресс новых направлений - гидрометаллургии и электрометаллургии, П. сохраняет ведущее положение. В крупнейших по объему выпускаемой продукции произ-вах чугуна и стали используют только пирометаллургич. переделы. Пирометаллургич. способом получают осн. часть Cu, Pb, Ni, Ti и др. важнейших металлов, а, кроме того, во мн. технол. схемах пирометаллургич. процессы сочетаются с гидро- и электрометаллургическими.

По целевому признаку пирометаллургич. процессы можно разделить на подготовительные, концентрирозание и очистку от осн. массы примесей, получение металлов из их соед., глубокую очистку металлов (рафинирование).

Наиб. распространенная подготовительная операция-обжиг, к-рый проводят при т-ре ниже т-р плавления сырья и продукта с целью изменения состава, удаления вредных примесей или(и) укрупнения пылевидных материалов (агломерирующий обжиг, или агломерация). По назначению и характеру протекающих процессов различают: окислит. обжиг, приводящий к получению оксидов или сульфатов (сульфатизирующий обжиг) при взаимод. сульфидных материалов с кислородом воздуха (напр., обжиг медных и молибденовых концентратов, сульфатизирующий обжиг цинковых концентратов); восстановит. обжиг для получения низших оксидов или металлов путем взаимод. исходных материалов с углем или др. восстановителями (напр., магнетизирующий обжиг железных руд с добавкой угля для перевода Fe2O3 в Fe3O4 перед электромагн. обогащением); кальцинирующий обжиг для получения оксидов металлов из их гидратов, карбонатов или др. соед., разлагающихся при высокой т-ре; обжиг с добавками твердых или жидких реагентов (напр., спекание вольфрамовых концентратов с содой для получения р-римого в воде Na2WO4, сульфатизация концентратов и пром. продуктов, содержащих Nb, Та и др. редкие металлы, с использованием H2SO4) и др. способы обжига.

Концентрирование металлов достигается переводом их и осн. массы пустой породы в разные легко отделяющиеся одна от другой фазы. Важнейший способ концентри-рования - плавка, осуществляемая при т-ре, достаточной для расплавления (полного или осн. части) исходного материала и продуктов. При плавке образуются два или более несмешивающихся жидких слоя, различающихся по плотности,-металлический, шлак (сплав оксидов), штейн (сплав сульфидов), расплавы солей и т.д. Восстановит. плавку проводят с использованием восстановителя, чаще всего твердого угле-родсодержащего (кокс, уголь). Продукты восстановит. плавки-металлич. расплав и шлак, иногда и др. фазы. Распределение металлов и примесей между слоями зависит от легкости их восстановления. При восстановит. плавке железных руд (доменный процесс), свинцовых, оловянных и др. концентратов извлекаемый металл переходит в металлич. фазу, примеси-в шлак или штейн, в то время как при плавке ильменитового концентрата (FeTiO3) целевым продуктом является шлак с высоким содержанием Ti, а в металлич. расплав переходит осн. примесь-Fe.

В основе окислит. плавки (окислитель - кислород) сульфидных руд, концентратов и пром. продуктов (отражательная, шахтная и электроплавка медных и медно-никелевых концентратов и руд на штейн, конвертирование никелевых и медно-никелевых штейнов и др.) лежит различие в сродстве металлов к кислороду и сере. При недостатке S в штейне концентрируются Cu, Ni, Со и др. цветные металлы, а осн. часть Fe, Ca, Si, Al, Mg и др. переходят в шлак. На этом же различии основана восстановительно-сульфидирующая плавка окисленных никелевых руд.

Др. группа процессов концентрирования основана на отделении металла в виде пара (или летучего соед.) от осн. массы исходного материала, находящегося в твердом или жидком состоянии. Осн. примеры: фьюминг-процесс-отгонка Pb, Zn, Cd, SnS и SnO при продувке жидких шлаков смесью воздуха с угольной пылью; вельц-процесс - отгонка Zn из смешанного с коксом дисперсного материала при т-ре, исключающей плавление; хлорирование титановых шлаков, лопаритового и цирконового концентратов с получением летучих TiCl4, NbOCl3, TaCl5, ZrCl4.

Для очистки от основной массы примесей применяют дистилляцию и др. процессы, основанные на разл. летучести соед. целевого металла и примесей (дистилляция MoO3, TiCl4, возгонка ZrCl4, вакуумная дистилляция Mg и MgCl2 из титановой губки и др.). Различия в летучести увеличивают избират. восстановлением, окислением или др. приемами (напр., избират. восстановление ZrCl4 в смеси с HfCl4 до нелетучего ZrCl3, избират. восстановление NbCl5 в смеси с TaCl5 до нелетучего NbCl3). Наиб. эффективный способ разделения в-в с разной т-рой кипения - ректификация (напр., очистка TiCl4 от SiCl4, разделение TaCl5 и NbCl5 и т.д.).

Получение металлов из соед. осуществляют разл. методами. Если соед. металла имеет достаточно низкую термич. устойчивость, металл из него можно получить без применения восстановителей-термич. диссоциацией. Этим способом получают, напр., Fe, Ni, Со и др. металлы из их карбонилов, W и Mo-из их хлоридов. Металлы с небольшим сродством к кислороду производят окислением их сульфидов (конвертирование медного штейна на черновую медь, получение Hg при окислит. обжиге HgS). В остальных случаях применяют электролиз в расплаве солей (напр., произ-во Al из Al2O3, Mg из MgCl2, Та из Ta2O5, Zr из K2ZrF6) или используют восстановители. С помощью восстановителей металлы чаще всего получают из оксидов и галогенидов. При произ-ве металлов из оксидов применяют СО, CH4, продукты неполного сжигания или взаимод. с водяным паром угля или прир. газа (восстановление оксидов Fe), H2 (восстановление оксидов W, Mo, Fe, Cu), углерод (получение Ni, Fe, W). Самые устойчивые оксиды восстанавливают углеродом (карботермич. способ) в вакууме (напр., получение Nb и Та) или металлами (см. Металлотермия), имеющими наибольшее сродство к кислороду (алюминотер-мич. способ получения Nb и Та, восстановление оксидов Ti и Zr кальцием или CaH2, оксидов U кальцием или Mg и т. д.). Галогениды восстанавливают металлами или H2 (восстановление TiCl4 и ZrCl4 магнием или натрием, BeF2 магнием, UF4 магнием или кальцием, натриетермич. восстановление K2TaF7, K2NbF7, K2ZrF6 и т.д.).

При рафинировании металлов используют различия в их хим. св-вах, в коэф. распределения между твердой фазой и расплавом, в летучестях металлов и примесей или их соединений. На избират. окислении примесей (С, Si, Mn, P, S и др.) основано получение стали из чугуна (см. Железа сплавы)-при окислении кислородом воздуха или обогащенного им дутья (конвертерные процессы) или оксидами, содержащимися в руде или скрапе (мартеновский процесс), примеси из металлич. расплава переходят в шлак или газы. Высокое сродство Cu к S используют при тонком рафинировании Pb-после добавления небольшого кол-ва элементарной S на пов-сть расплавленного Pb всплывает твердый сульфид Cu2S.

В основе ликвационной очистки металлов лежит выделение примесей из расплава при понижении т-ры. Примерами могут служить очистка Pb от Cu, Sn от Fe и др. Дистилляц. очистке подвергают металлы, имеющие достаточно высокую летучесть (Hg, Cd, As, Zn и др.). В ряде случаев дистилляцию проводят в вакууме (Li, Rb, Cs и др.).

При очистке от примесей, более летучих, чем основной металл, последний переплавляют в вакууме. Этот метод применяют в металлургии W, Mo, Nb, Та, Ti, Zr и др. Глубокую очистку металлов обеспечивают химические транспортные реакции (р-ции переноса) - обратимые р-ции, сопровождающиеся переносом основного металла из одной температурной зоны в другую в результате образования и разложения промежут. газообразных соед. (напр., очистка Ni в виде тетракарбонила, Ti и Zr в виде тетраиодидов). Самые чистые металлы получают с помощью направленной кристаллизации и зонной плавки-процессов, основанных на обогащении выделившихся из расплава кристаллов примесями, повышающими т-ру плавления металла, а расплава - примесями, понижающими ее. Эти способы очистки применяют при получении монокристаллов W, Mo, Ga, Al, Sn и др.

Пирометаллургич. процессы осуществляют в печах разл. типа с использованием разнообразных видов нагрева (см. Печи). В последние годы развиваются автогенные процессы, в к-рых требуемая т-ра поддерживается благодаря выделяющемуся теплу экзотермич. р-ций, напр. обжиг сульфидных концентратов в кипящем слое, плавка во взвешенном состоянии на кислородном или горячем воздушном дутье, процессы "Норанда" и "Мицубиси", плавка в жидкой ванне и др. (см. Медь).

Важное направление совершенствования пирометаллур-гич. процессов-снижение их вредного воздействия на окружающую среду, связанное с внедрением безотходных технологий, с сокращением и обезвреживанием отходов и выбросов.

Лит.: Ванюков А. В., Зайцев В. Я., Теория пирометаллургических процессов, M., 1973; Севрюков H. H., Кузьмин Б. А., Челищев E. В., Общая металлургия, 3 изд., M., 1976; Зеликман A. H., Металлургия редких металлов, M., 1980; Ванюков А. В., Уткин H. И., Комплексная переработка медного и никелевого сырья, Челябинск, 1988. Г. M. Вольдман.



5-пиразолон B-пропиолактон L-пеницилламин Пааля-кнорра реакция Палеобиогеохимия Палладий Пальмитиновая кислота Пальмовое масло Пантотеновая кислота Папаверин Папайн Пара Паральдегид Парамагнетики Параметры состояния Паратгормон Парафин Парафины Параформальдегид Парофазный анализ Парфюмерные масла Пассерини реакция Пассивность металлов Патерно- бюхи реакция Паули принцип Паули реакция Пек древесный Пек каменноугольный Пектины Пеларгоновая кислота Пенициллины Пенная сепарация Пенопласты Пенопласты интегральные Пенополивинилхлориды Пенополиолефины Пенополистиролы Пенополиуретаны Пеностекло Пенофенопласты Пентанолы Пентаны Пентапласт Пентафенилфосфоран Пентафталевые смолы Пентафтор-2-азапропен Пентафторанилин Пентафторфенол Пентафторхлорбензол Пентаэритрит Пентены Пентозофосфатный цикл Пентозы Пены Пептидные алкалоиды Пептидные антибиотики Пептидогликаны Пептизация Первое начало термодинамики Переалкилирование Переаминирование Перегалогенирование Перегонка Перегруппировки молекулярные Перемешивание Перенапряжение электрохимическое Перенитрилирование Переноса процессы Переноса числа Переходные элементы Переэтерификация Пери Перилен Перилловое масло Перимидин Периноновые красители Период индукции Перитектика Перициклические реакции Перкина реакция Перкова реакция Перколяционная очистка Пермаллой Перманганатометрия Перманганаты Перовскит Пероксидазы Пероксидные Пероксинитраты Пероксобораты Пероксокислоты Персоль Перфторалкановые кислоты Перфторалкансульфокислоты Перфторалкилиодиды Перфтордекалин Перфторизобутилен Перфторкарбоновые кислоты Перфторнитрозоизобутан Перфторолефинов окиси Перфторполиэфиры Перфторциклобутан Перфторциклобутанон Перфторциклобутен Перхлораты Перхлорвиниловые лаки Перхлорвиниловые смолы Перхлорэтилен Пестицидные препараты Пестициды Петролатум Петролейный эфир Петрохимия Печатание тканей Печи Пигменты Пиколиновая кислота Пиколины Пикраты Пикриновая кислота Пикте шпенглера реакция Пилокарпин Пинаконы Пиндолол Пинены Пиннера реакции Пиперазин Пиперидин Пиперидолы Пиперилен Пиперитон Пиразидол Пиразин Пиразол Пирамидальная инверсия Пираны Пирацетам Пирен Пиретрины Пиретроиды Пиридазин Пиридилазонафтол Пиридилазорезорцин Пиридин Пиридиния соли Пиридиновые алкалоиды Пиридоны Пирилия соли Пиримидин Пиримидиновые основания Пирит Пиро... Пиробензол Пировиноградная кислота Пирогаллол Пирогенетическая вода Пирогидролиз Пирокатехин Пирокатехиновый фиолетовый Пироксилин Пиролиз Пиролиз древесины Пиролиз нефтяного сырья Пиромеллитовая кислота Пиромеллитовый диангидрид Пирометаллургия Пирометры Пироны Пиротехнические составы Пирофорное вещество Пирофосфаты неорганические Пирофосфаты органические Пирохлоры Пироэлектрики Пиррол Пирролидин Пирролизидин Пирролизидиновые алкалоиды Пируваткарбоксилаза Питатели Питтинговая коррозия Пищимуки реакция Плавиковая кислота Плавиковый шпат Плавкости диаграмма Плавление Плазма Плазмалогены Плазмида Плазмин Плазмохимическая технология Плазмохимия Планарная технология Планирование эксперимента Планка постоянная Пластбетон Пластизоли Пластикат Пластикация полимеров Пластики Пластификаторы Пластификация полимеров Пластические массы Пластичность Пластичные смазки Пластмассы Платина Платиновые металлы Платформинг Плацентарный лактоген Пленки полимерные Пленкообразователи Плотная упаковка Плотномеры Плутоний Плутония карбиды Плутония нитрид Плюроники Плёночные аппараты Пневмо- и гидротранспорт Пневмоформование полимеров Поверхностная активность Поверхностная энергия Поверхностное натяжение Поверхностные явления Поворотная изомерия Погрешность анализа Подвулканизация Подземная коррозия Подобия теория Подсмольная вода Подсолнечное масло Пожарная опасность Позитивный процесс Позитрон Позитроний Полевые шпаты Полезные ископаемые Поли(ароилен-бис-бензимидазолы) Поли-2,6-диметил-n-фениленоксид Поли-4-метил-1-пентен Поли-n-бензамид Поли-n-ксилилены Поли-n-фенилентерефталамид Поли-м-фениленизофталамид Поли-[3,3-бис-(хлорметил)оксетан] Поли-n-винилкарбазол Поли-n-винилпирролидон Поли-е-капроамид Полиакриламид Полиакрилаты Полиакриловая кислота Полиакриловые лаки Полиакрилонитрил Полиалломеры Полиамидные волокна Полиамидные плёнки Полиамидокислоты Полиамиды Полиамины Полиамфолиты Полиангидриды Полиарилаты Полиацетали Полиацетилен Полибензимидазолы Полибензоксазолы Полибензотиазолы Полибутен Полибутилентерефталат Поливинилketаль Поливинилацетали Поливинилацетат Поливинилбутиловый эфир Поливинилбутираль Поливинилены Поливинилиденфторид Поливинилиденхлорид Поливиниловые эфиры Поливиниловый спирт Поливинилпиридины Поливинилспиртовые волокна Поливинилстеарат Поливинилформаль Поливинилформальэтилаль Поливинилфторид Поливинилхлорид Поливинилхлорид хлорированный Поливинилхлоридные волокна Поливинилхлоридные пленки Поливинилэтилаль Полигалогениды Полигексаметиленадипинамид Полигексаметиленгуанидин Полигексаметиленсебацинамид Полигетероарилены Полигидразиды Полигидроксиамиды Полидезоксирибонуклеотид-синтетазы Полидодеканамид Полиеновые антибиотики Полиены Полиизобутилен Полиизопрен Полиимидные пленки Полиимиды Полиины Поликарбонатные плёнки Поликарбонаты Поликонденсация Поликонденсация в расплаве Поликонденсация в растворе Поликоординация Поликристаллы Полилактид Полимер-полимерные комплексы Полимераналогичные превращения Полимербетон Полимергомологи Полимеризация Полимеризация в растворе Полимеризация на наполнителях Полимерные гидрогели Полимерные красители Полимерные материалы Полимерцемёнт Полимеры Полиметакрилаты Полиметакриловая кислота Полиметаллоорганосилоксаны Полиметиленоксид Полиметилметакрилат Полиметиновые красители Полиметины Полиморфизм Полимочевины Полинозные волокна Полиоксадиазолы Полиоксиметилён Полиоксипропилён Полиоксиэтилен Полиоксиэтиленалканоаты Полиоксиэтиленалкиламины Полиолефиновые волокна Полиолефиновые плёнки Полиолефины Полиорганосилазаны Полиорганосиланы Полиорганосилоксаны Полипептиды Полипиромеллитимиды Полиприсоединёние Полипропилен Полипропилен хлорированный Полипропиленовые волокна Полипропиленовые плёнки Полипропиленоксид Полирекомбинация Полирование Полироли Полисахариды Полистирол Полистирол ударопрочный Полистирольные плёнки Полисульфидные каучуки Полисульфиды неорганические Полисульфйды органические Полисульфоны Политетраметиленадипинамид Политетрафторэтилен Политионаты Политипизм Политонные перегруппировки Политриазолы Политрифторхлорэтилен Полиуретанмочевины Полиуретановые волокна Полиуретановые лаки Полиуретановые эластомеры Полиуретаны Полифениленоксиды Полифенилены Полиформальдегид Полифосфазены Полифтор- Полифторкетоны Полихиноксалины Полициклизация Полиэдрические соединения Полиэлектролиты Полиэтерификация Полиэтилен Полиэтилен хлорированный Полиэтилен хлорсульфированный Полиэтиленгликоли Полиэтиленимин Полиэтиленовые волокна Полиэтиленовые плёнки Полиэтиленоксид Полиэтиленполиамины Полиэтилентерефталат Полиэфирные волокна Полиэфирные лаки Полиэфирные смолы Полиэфируретаны Полиэфиры простые Полиэфиры сложные Полиядерные соединения Полоний Полоновского реакция Полукоксование Полуметаллы Полупроводники Полупроводниковые материалы Полуцеллюлоза Полуэмпирические методы Поля лигандов теория Поляризация Поляризуемость Поляримётрйя Полярные молекулы Полярография Пористая резина Пористое стекло Пористость Порообразователи Поропласты Порофоры Пороха Порошки Порошковая металлургия Порошковые краски Портландцемент Порфирины Порядок реакции Постоянная авогардо Постоянная больцмана Постоянная планка Поташ Потенциал ионизации Потенциал нулевого заряда Потенциал оседания Потенциал течения Потенциометрия Празеодим Превореакция Прегля методы Предельные углеводороды Предиссоциация Преднизолон Прелога правило Премиксы Препарированные смолы Препрёги Прессование полимеров Пресспорошкй Преципитат Приборные масла Приведенные параметры Привитые сополимеры Пригожина теорема Прилежаева реакция Принса реакция Приработочные масла Природные волокна Присадки к топливам Присоединения реакции Проба аналитическая Пробирный анализ Проектирование Произведение активностей Произведение растворимости Производство энтропии Проксамины Проксанолы Пролактин Проламины Пролин Промедол Прометий Промоторы Проназа комплекс Пропан Пропаргиловый спирт Пропелленты Пропен Пропиламины Пропилен Пропиленгликоли Пропиленкарбонат Пропиленоксид Пропиленоксидный каучук Пропиленсульфид Пропиловый спирт Пропин Пропиоловая кислота Пропионовая кислота Пропионовый альдегид Пропиофенон Проспидин Простагландины Пространственная изомерия Простые эфиры Протактиний Протеогликаны Протеолитические ферменты Противовирусные средства Противовуалирующие вещества Противогазы Противоглистные средства Противоградовые составы Противогрибковые средства Противокашлевые средства Противомикробные средства Противоопухолевые средства Противопротозойные средства Противостарители Противосудорожные средства Противоутомители Протий Протон Протонирование Протравители семян Протравные красители Протромбиновый комплекс Прочность Прямые красители Псевдовращение Псевдокумол Псевдоожижение Псевдоожиженный электрод Псевдооснования Психостимулирующие срёдсгва Психотропные средства Птеридин Пулегон Пульсационные аппараты Пуммерера перегруппировка Пурин Пуриновые алкалоиды Пуриновые антибиотики Пуриновые основания Пфицнера-моффатта реакция Пчелиный воск Пшорра синтез Пылемеры Пылеулавливание Пыли Пьезоэлектрики Пятновыводители Фотометрия пламени эмиссионная