Словарь научных терминов

Переноса процессы

ПЕРЕНОСА ПРОЦЕССЫ, необратимые процессы пространств. переноса массы, импульса, энергии или др. Причины этих процессов-пространств.неоднородности состава, скорости движения частиц системы, т-ры. Перенос происходит в направлении, обратном градиенту концентрации, т-ры или др., что приближает систему к равновесию.

П. п. в покоящейся среде осуществляются только в результате хаотич. движения молекул (мол. перенос). В текущих средах к этому механизму переноса добавляется конвектив-ный перенос, а при высоких числах Рейнольдса еще и турбулентный перенос, связанный с хаотич. перемещением вихрей. Общую феноменологич. теорию П. п., применимую к газообразной, жидкой или твердой системе, дает термодинамика необратимых процессов.

П. п. при турбулентном режиме движения жидкости в пространстве с учетом молекулярного, конвективного и турбулентного механизмов переноса описывают с помощью выражений (1)-(3) для вектора плотности потока массы jА, тензора плотности потока импульса несжимаемой ньютоновской жидкости Пik [жидкость считается несжимаемой, если число Маха не превышает величину 0,14; в противном случае необходимы поправки., приводящие к появлению дополнит. членов в ур-нии (2)] и вектора плотности потока теплоты https://www.medpulse.ru/image/encyclopedia/5/8/9/10589.jpeg:

https://www.medpulse.ru/image/encyclopedia/5/9/0/10590.jpeg

где https://www.medpulse.ru/image/encyclopedia/5/9/1/10591.jpeg плотн. жидкости; СА, v, T -мгновенные значения соотв. концентрации компонента А в смеси, вектора скорости и т-ры; С'А, v', T' их пульсац. составляющие; https://www.medpulse.ru/image/encyclopedia/5/9/2/10592.jpeg -объемная массовая концентрация компонента А; https://www.medpulse.ru/image/encyclopedia/5/9/3/10593.jpeg -компоненты мгновенного значения скорости в прямоугольных декартовых координатах; https://www.medpulse.ru/image/encyclopedia/5/9/4/10594.jpeg-компоненты пульсац. значений скорости; D, v и a-коэффициенты соотв. мол. диффузии, кинематич. вязкости и температуропроводности; p мгновенное значение давления; Ср теплоемкость при постоянном давлении; xi,·, xk-координаты прямоугольной декартовой системы координат; i, k = 1, 2, 3-индексы координат и компонент скорости; https://www.medpulse.ru/image/encyclopedia/5/9/5/10595.jpeg-оператор осреднения переменных величин по времени в рассматриваемой точке пространства; https://www.medpulse.ru/image/encyclopedia/5/9/6/10596.jpeg-оператор набла; i1, i2, i3 -направляющие орты прямоугольной декартовой системы координат (единичные векторы); дельта-символ Кронекера.https://www.medpulse.ru/image/encyclopedia/5/9/7/10597.jpeg

Составляющие плотностей потоков массы, импульса и теплоты в ур-ниях (1)-(3) описываются выражениями (4)-при молекулярном, (5)-при конвективном и (6)-при турбулентном механизмах переноса:

https://www.medpulse.ru/image/encyclopedia/5/9/8/10598.jpeg

При ламинарном режиме течения: C'A = v' = T' = 0 и в приведенных выше ур-ниях осредненные по времени значения переменных приобретают смысл мгновенных величин; поэтому в ур-ниях (1)-(3) следует принятьhttps://www.medpulse.ru/image/encyclopedia/5/9/9/10599.jpeg = СА, https://www.medpulse.ru/image/encyclopedia/6/0/0/10600.jpeg = v, https://www.medpulse.ru/image/encyclopedia/6/0/1/10601.jpeg — T и опустить составляющие (6).

В покоящейся среде конвективный механизм переноса отсутствует, поэтому при постоянном значении r получают ур-ния, дающие трехмерную формулировку закона Фика и ур-ния Фурье:

https://www.medpulse.ru/image/encyclopedia/6/0/2/10602.jpeg

Из ур-ний (7) видно, что перенос массы (диффузия) происходит при наличии в системе градиента концентрации, а перенос теплоты (теплопроводность) - вследствие градиента т-ры. Строго говоря, движущей силой диффузии является градиент хим. потенциала, к-рый лишь вблизи положения равновесия приводится к градиенту концентрации, фигурирующему в ур-нии закона Фика. Однако практич. необходимость выражать диффузионный поток через градиент хим. потенциала (что существенно усложняет задачу) возникает лишь в спец. случаях, напр. при расчете процесса вблизи критич. точки. Законы Фика и Фурье не учитывают взаимное влияние потоков при переносе массы и теплоты (перекрестные процессы).

При существ. градиентах т-ры и давления (последнее м. б. вызвано, напр., внеш. полем) необходим учет дополнит. потока массы вследствие градиентов т-ры (термодиффузия) и градиентов давления (бародиффузия), а также учет дополнит. потока теплоты, вызванного переносом массы. При определенных условиях для перекрестных потоков выполняется теорема Онсагера.

Составляющая тензора https://www.medpulse.ru/image/encyclopedia/6/0/3/10603.jpeg в ур-нии (4), для к-рой при ламинарном режиме течения принимают https://www.medpulse.ru/image/encyclopedia/6/0/4/10604.jpeg =https://www.medpulse.ru/image/encyclopedia/6/0/5/10605.jpeg, https://www.medpulse.ru/image/encyclopedia/6/0/6/10606.jpeg = https://www.medpulse.ru/image/encyclopedia/6/0/7/10607.jpeg, получила назв. вязкого тензора напряжений.

Особенно простой вид принимают ур-ния (4) для одномерных систем. Напр., плотность мол. потока импульса при течении с градиентом скорости ux = f(y), u y = uz = 0 выражают в виде закона вязкого течения Ньютона:

https://www.medpulse.ru/image/encyclopedia/6/0/8/10608.jpeg

Аналогичные соотношения имеют место для плотностей одномерных потоков массы и теплоты. В случаях двух- и трехмерных потоков https://www.medpulse.ru/image/encyclopedia/6/0/9/10609.jpeg представляет собой тензор с девятью компонентами, а https://www.medpulse.ru/image/encyclopedia/6/1/0/10610.jpeg, https://www.medpulse.ru/image/encyclopedia/6/1/1/10611.jpeg-векторы с тремя компонентами.

Для неньютоновских жидкостей перенос импульса нельзя описать в виде простого градиентного закона (8). Соотношение между плотностью вязкого потока импульса и градиентом скорости для неньютоновских жидкостей определяют по моделям Шведова-Бингама, Оствальда - Вейля, Эйринга и др.

В настоящее время турбулентные потоки [ур-ние (6)] не м. б. определены теоретич. путем. Согласно гипотезе Буссинеска, между вязким и турбулентным потоками импульса имеется аналогия:

https://www.medpulse.ru/image/encyclopedia/6/1/2/10612.jpeg

Величину vт обычно наз. турбулентным коэф. кинематич. вязкости, или вихревой вязкостью. Существуют и др. способы (приближенные) выражения связи плотности турбулентного потока импульса с осредненными характеристиками течения-теория пути перемешивания Прандтля, гипотеза подобия Кармана и др.

Гипотезу Буссинеска используют также при описании процессов турбулентного переноса массы и теплоты; напр., плотность турбулентного потока массы по оси x выражают ур-нием:

https://www.medpulse.ru/image/encyclopedia/6/1/3/10613.jpeg

Ур-ния (9) и (10) являются, по существу, определениями коэф. турбулентной диффузии Dти вязкости. Трудность описания П. п. с помощью коэф. DT, vт и температуропроводности aтзаключается не только в их сложной зависимости от характеристик турбулентного потока, но и в том, что турбулентные потоки не всегда пропорциональны соответствующим градиентам. Достоинством же данного приближенного подхода является непосредств. учет осн. особенности турбулентных течений-аналогии между процессами турбулентного переноса массы, импульса и теплоты, что проявляется в приближенном равенстве Dтhttps://www.medpulse.ru/image/encyclopedia/6/1/4/10614.jpegvт = aт.

Турбулентный перенос вдали от пов-стей, ограничивающих область течения, во много раз превышает молекулярный. Так, напр., у газов D ~ 10-5 м2/с, а значения DT при течении в трубах находятся в пределах от 10-4 до 10-2 м2/с. Значение отношения D/DT остается небольшим и при течении жидкостей ~10-6-10-4.

Гипотезу, согласно к-рой перенос определяется градиентом параметра в рассматриваемой точке пространства в данный момент времени, используют для самых разл. процессов, напр. при описании диффузии в пористых материалах, продольного перемешивания в каналах, заполненных насадкой или зернистым слоем, и т.д. Из этой гипотезы, в частности, следует, что локальные концентрац. возмущения проявляются мгновенно во всех точках системы. Но скорость распространения концентрац. возмущений не м. б. больше средней скорости молекул. Учет конечной скорости переноса массы, импульса или теплоты приводит к релак-сац. ур-ниям. В простейшем случае одномерной диффузии в отсутствие хим. превращений связь между плотностью диффузионного потока и градиентом концентрации в системе координат, неподвижной относительно среды, имеет вид:

https://www.medpulse.ru/image/encyclopedia/6/1/5/10615.jpeg

где Dе-коэф. эффективной диффузии (при рассмотрении молекулярных П. п. Dе следует заменить на коэф. D); т-время релаксации диффузионного процесса, характеризующее "память среды"; t- время. По порядку величины т совпадает со временем своб. пробега диффундирующих частиц. Аналогичные ур-ния м. б. записаны для плотности потока импульса и теплоты.

Необходимым (но недостаточным) условием применимости законов Фика, Фурье и Ньютона является незначительность изменения соответствующей концентрации за время т или на расстояниях, проходимых движущейся жидкостью за время т. Для мол. процессов время релаксации чрезвычайно мало (~ 10-10 с), чем, в частности, оправдывается применимость простых градиентных законов. При этом физически несостоятельное допущение о бесконечной скорости распространения возмущений не играет большой роли, т. к. область заметного влияния концентрац. возмущений оказывается ограниченной и распределение концентрации внутри этой области м. б. удовлетворительно описано на основе ур-ний (7) и (8).

Обобщение законов переноса с учетом релаксац. явлений необходимо, напр., для массопереноса в капиллярнопорис-тых телах, турбулентной диффузии при малых временах рассеяния частиц примеси, при наличии быстрых хим. превращений. Особое значение имеет учет релаксац. эффектов при описании продольного перемешивания в хим. аппаратах, обусловленного гидродинамич. неоднородностями разл. масштаба.

Дифференц. ур-ния конвективной диффузии, движения жидкости (ур-ние Навье Стокса) и переноса тепла получают с помощью выражений (1)-(3) на основании законов сохранения массы и энергии:

https://www.medpulse.ru/image/encyclopedia/6/1/6/10616.jpeg

https://www.medpulse.ru/image/encyclopedia/6/1/7/10617.jpeg

Получающиеся при этом дифференц. ур-ния, дополненные ур-нием неразрывности и соответствующими начальными и граничными условиями, позволяют определять концентрац.. скоростные и температурные поля в гомог. системах. П. п. в гетерог системах рассматривают в механике многофазных сред. О П. п. в электрич. поле см. Электроперенос.

Лит. Grоот С Мазур П Неравновесная термодинамика, пер с англ. , M 1964. Толубинский E В Теория процессов переноса. К., 1969; Лыков А.В. Тепломассообмен. Справочник, M., 1972, Берд P Стьюарт В , Лайтфут E Явления переноса, пер. с англ., M., 1974; Ландау Л Д , Лифшиц E. M. Теоретическая физика, т. 6. Гидродинамика. 4 изд.. M., 1988

В . В. Дильман


5-пиразолон B-пропиолактон L-пеницилламин Пааля-кнорра реакция Палеобиогеохимия Палладий Пальмитиновая кислота Пальмовое масло Пантотеновая кислота Папаверин Папайн Пара Паральдегид Парамагнетики Параметры состояния Паратгормон Парафин Парафины Параформальдегид Парофазный анализ Парфюмерные масла Пассерини реакция Пассивность металлов Патерно- бюхи реакция Паули принцип Паули реакция Пек древесный Пек каменноугольный Пектины Пеларгоновая кислота Пенициллины Пенная сепарация Пенопласты Пенопласты интегральные Пенополивинилхлориды Пенополиолефины Пенополистиролы Пенополиуретаны Пеностекло Пенофенопласты Пентанолы Пентаны Пентапласт Пентафенилфосфоран Пентафталевые смолы Пентафтор-2-азапропен Пентафторанилин Пентафторфенол Пентафторхлорбензол Пентаэритрит Пентены Пентозофосфатный цикл Пентозы Пены Пептидные алкалоиды Пептидные антибиотики Пептидогликаны Пептизация Первое начало термодинамики Переалкилирование Переаминирование Перегалогенирование Перегонка Перегруппировки молекулярные Перемешивание Перенапряжение электрохимическое Перенитрилирование Переноса процессы Переноса числа Переходные элементы Переэтерификация Пери Перилен Перилловое масло Перимидин Периноновые красители Период индукции Перитектика Перициклические реакции Перкина реакция Перкова реакция Перколяционная очистка Пермаллой Перманганатометрия Перманганаты Перовскит Пероксидазы Пероксидные Пероксинитраты Пероксобораты Пероксокислоты Персоль Перфторалкановые кислоты Перфторалкансульфокислоты Перфторалкилиодиды Перфтордекалин Перфторизобутилен Перфторкарбоновые кислоты Перфторнитрозоизобутан Перфторолефинов окиси Перфторполиэфиры Перфторциклобутан Перфторциклобутанон Перфторциклобутен Перхлораты Перхлорвиниловые лаки Перхлорвиниловые смолы Перхлорэтилен Пестицидные препараты Пестициды Петролатум Петролейный эфир Петрохимия Печатание тканей Печи Пигменты Пиколиновая кислота Пиколины Пикраты Пикриновая кислота Пикте шпенглера реакция Пилокарпин Пинаконы Пиндолол Пинены Пиннера реакции Пиперазин Пиперидин Пиперидолы Пиперилен Пиперитон Пиразидол Пиразин Пиразол Пирамидальная инверсия Пираны Пирацетам Пирен Пиретрины Пиретроиды Пиридазин Пиридилазонафтол Пиридилазорезорцин Пиридин Пиридиния соли Пиридиновые алкалоиды Пиридоны Пирилия соли Пиримидин Пиримидиновые основания Пирит Пиро... Пиробензол Пировиноградная кислота Пирогаллол Пирогенетическая вода Пирогидролиз Пирокатехин Пирокатехиновый фиолетовый Пироксилин Пиролиз Пиролиз древесины Пиролиз нефтяного сырья Пиромеллитовая кислота Пиромеллитовый диангидрид Пирометаллургия Пирометры Пироны Пиротехнические составы Пирофорное вещество Пирофосфаты неорганические Пирофосфаты органические Пирохлоры Пироэлектрики Пиррол Пирролидин Пирролизидин Пирролизидиновые алкалоиды Пируваткарбоксилаза Питатели Питтинговая коррозия Пищимуки реакция Плавиковая кислота Плавиковый шпат Плавкости диаграмма Плавление Плазма Плазмалогены Плазмида Плазмин Плазмохимическая технология Плазмохимия Планарная технология Планирование эксперимента Планка постоянная Пластбетон Пластизоли Пластикат Пластикация полимеров Пластики Пластификаторы Пластификация полимеров Пластические массы Пластичность Пластичные смазки Пластмассы Платина Платиновые металлы Платформинг Плацентарный лактоген Пленки полимерные Пленкообразователи Плотная упаковка Плотномеры Плутоний Плутония карбиды Плутония нитрид Плюроники Плёночные аппараты Пневмо- и гидротранспорт Пневмоформование полимеров Поверхностная активность Поверхностная энергия Поверхностное натяжение Поверхностные явления Поворотная изомерия Погрешность анализа Подвулканизация Подземная коррозия Подобия теория Подсмольная вода Подсолнечное масло Пожарная опасность Позитивный процесс Позитрон Позитроний Полевые шпаты Полезные ископаемые Поли(ароилен-бис-бензимидазолы) Поли-2,6-диметил-n-фениленоксид Поли-4-метил-1-пентен Поли-n-бензамид Поли-n-ксилилены Поли-n-фенилентерефталамид Поли-м-фениленизофталамид Поли-[3,3-бис-(хлорметил)оксетан] Поли-n-винилкарбазол Поли-n-винилпирролидон Поли-е-капроамид Полиакриламид Полиакрилаты Полиакриловая кислота Полиакриловые лаки Полиакрилонитрил Полиалломеры Полиамидные волокна Полиамидные плёнки Полиамидокислоты Полиамиды Полиамины Полиамфолиты Полиангидриды Полиарилаты Полиацетали Полиацетилен Полибензимидазолы Полибензоксазолы Полибензотиазолы Полибутен Полибутилентерефталат Поливинилketаль Поливинилацетали Поливинилацетат Поливинилбутиловый эфир Поливинилбутираль Поливинилены Поливинилиденфторид Поливинилиденхлорид Поливиниловые эфиры Поливиниловый спирт Поливинилпиридины Поливинилспиртовые волокна Поливинилстеарат Поливинилформаль Поливинилформальэтилаль Поливинилфторид Поливинилхлорид Поливинилхлорид хлорированный Поливинилхлоридные волокна Поливинилхлоридные пленки Поливинилэтилаль Полигалогениды Полигексаметиленадипинамид Полигексаметиленгуанидин Полигексаметиленсебацинамид Полигетероарилены Полигидразиды Полигидроксиамиды Полидезоксирибонуклеотид-синтетазы Полидодеканамид Полиеновые антибиотики Полиены Полиизобутилен Полиизопрен Полиимидные пленки Полиимиды Полиины Поликарбонатные плёнки Поликарбонаты Поликонденсация Поликонденсация в расплаве Поликонденсация в растворе Поликоординация Поликристаллы Полилактид Полимер-полимерные комплексы Полимераналогичные превращения Полимербетон Полимергомологи Полимеризация Полимеризация в растворе Полимеризация на наполнителях Полимерные гидрогели Полимерные красители Полимерные материалы Полимерцемёнт Полимеры Полиметакрилаты Полиметакриловая кислота Полиметаллоорганосилоксаны Полиметиленоксид Полиметилметакрилат Полиметиновые красители Полиметины Полиморфизм Полимочевины Полинозные волокна Полиоксадиазолы Полиоксиметилён Полиоксипропилён Полиоксиэтилен Полиоксиэтиленалканоаты Полиоксиэтиленалкиламины Полиолефиновые волокна Полиолефиновые плёнки Полиолефины Полиорганосилазаны Полиорганосиланы Полиорганосилоксаны Полипептиды Полипиромеллитимиды Полиприсоединёние Полипропилен Полипропилен хлорированный Полипропиленовые волокна Полипропиленовые плёнки Полипропиленоксид Полирекомбинация Полирование Полироли Полисахариды Полистирол Полистирол ударопрочный Полистирольные плёнки Полисульфидные каучуки Полисульфиды неорганические Полисульфйды органические Полисульфоны Политетраметиленадипинамид Политетрафторэтилен Политионаты Политипизм Политонные перегруппировки Политриазолы Политрифторхлорэтилен Полиуретанмочевины Полиуретановые волокна Полиуретановые лаки Полиуретановые эластомеры Полиуретаны Полифениленоксиды Полифенилены Полиформальдегид Полифосфазены Полифтор- Полифторкетоны Полихиноксалины Полициклизация Полиэдрические соединения Полиэлектролиты Полиэтерификация Полиэтилен Полиэтилен хлорированный Полиэтилен хлорсульфированный Полиэтиленгликоли Полиэтиленимин Полиэтиленовые волокна Полиэтиленовые плёнки Полиэтиленоксид Полиэтиленполиамины Полиэтилентерефталат Полиэфирные волокна Полиэфирные лаки Полиэфирные смолы Полиэфируретаны Полиэфиры простые Полиэфиры сложные Полиядерные соединения Полоний Полоновского реакция Полукоксование Полуметаллы Полупроводники Полупроводниковые материалы Полуцеллюлоза Полуэмпирические методы Поля лигандов теория Поляризация Поляризуемость Поляримётрйя Полярные молекулы Полярография Пористая резина Пористое стекло Пористость Порообразователи Поропласты Порофоры Пороха Порошки Порошковая металлургия Порошковые краски Портландцемент Порфирины Порядок реакции Постоянная авогардо Постоянная больцмана Постоянная планка Поташ Потенциал ионизации Потенциал нулевого заряда Потенциал оседания Потенциал течения Потенциометрия Празеодим Превореакция Прегля методы Предельные углеводороды Предиссоциация Преднизолон Прелога правило Премиксы Препарированные смолы Препрёги Прессование полимеров Пресспорошкй Преципитат Приборные масла Приведенные параметры Привитые сополимеры Пригожина теорема Прилежаева реакция Принса реакция Приработочные масла Природные волокна Присадки к топливам Присоединения реакции Проба аналитическая Пробирный анализ Проектирование Произведение активностей Произведение растворимости Производство энтропии Проксамины Проксанолы Пролактин Проламины Пролин Промедол Прометий Промоторы Проназа комплекс Пропан Пропаргиловый спирт Пропелленты Пропен Пропиламины Пропилен Пропиленгликоли Пропиленкарбонат Пропиленоксид Пропиленоксидный каучук Пропиленсульфид Пропиловый спирт Пропин Пропиоловая кислота Пропионовая кислота Пропионовый альдегид Пропиофенон Проспидин Простагландины Пространственная изомерия Простые эфиры Протактиний Протеогликаны Протеолитические ферменты Противовирусные средства Противовуалирующие вещества Противогазы Противоглистные средства Противоградовые составы Противогрибковые средства Противокашлевые средства Противомикробные средства Противоопухолевые средства Противопротозойные средства Противостарители Противосудорожные средства Противоутомители Протий Протон Протонирование Протравители семян Протравные красители Протромбиновый комплекс Прочность Прямые красители Псевдовращение Псевдокумол Псевдоожижение Псевдоожиженный электрод Псевдооснования Психостимулирующие срёдсгва Психотропные средства Птеридин Пулегон Пульсационные аппараты Пуммерера перегруппировка Пурин Пуриновые алкалоиды Пуриновые антибиотики Пуриновые основания Пфицнера-моффатта реакция Пчелиный воск Пшорра синтез Пылемеры Пылеулавливание Пыли Пьезоэлектрики Пятновыводители Фотометрия пламени эмиссионная