Словарь научных терминов

Гидромеханические процессы

ГИДРОМЕХАНИЧЕСКИЕ ПРОЦЕССЫ химической технологии, подразделяют на процессы, протекающие с образованием неоднородных систем (диспергирование, перемешивание, псевдоожижение, пенообразование), с разделением этих систем (классификация гидравлическая, осаждение, фильтрование, центрифугирование и др.), с перемещением потоков в трубопроводах или аппаратах (см. Компрессорные машины, Насосы).

По условиям движения потоков различают след. задачи гидродинамики: 1) внутреннюю-движение жидкостей и газов в трубопроводах и аппаратах, в т. ч. в змеевиках, рубашках, трубном и межтрубном пространстве теплообменников, ректификационных, экстракционных и абсорбционных колоннах, выпарных и сушильных установках, печах; 2) внешнюю-движение частиц в газообразных и жидких средах, включая осаждение пыли под действием силы тяжести в пылеосадительных камерах или центробежной и инерц. сил в циклонах; разделение суспензий и эмульсий в отстойниках, гидроциклонах, осадительных центрифугах и сепараторах; пневмо- и гидротранспорт; барботирование и перемешивание твердых частиц с жидкостями; диспергирование жидкостей при распыливании в газовых и паровых средах (см. Газов очистка, Циклоны); 3) смешанную-движение жидкостей и газов через пористые слои кусковых или зернистых материалов (см. Фильтрование). В последнем случае в зависимости от высоты слоя материала Я различают процессы: а) при H = = const-движение газа в абсорберах, регенеративных теплообменниках, реакторах с неподвижным слоем катализатора (см. Реакторы химические), адсорберах, сушилках и печах; промывка осадков на фильтрах и др.; б) при Hhttps://www.medpulse.ru/image/encyclopedia/5/5/2/5552.jpeg const - фильтрование на пром. фильтрах и центрифугах. Осн. законы, к-рым подчиняется движение жидкостей, газов и их смесей в трубах, каналах и аппаратах: сохранения массы, энергии, кол-ва движения (импульса). Движение жидкости (газа) описывается системой дифференц. ур-ний, включающей ур-ния движения Навье-Стокса и ур-ние неразрывности (сплошности) потока. Интегрирование этого ур-ния приводит к ур-нию постоянства расхода: V = f1w1= = f2w2 =f3w3 (f1, f2, f3 - плошдди поперечных сечений трубопровода, м2; w1, w2, w3-средние скорости потока, м/с). Распределение скоростей по сечению канала зависит от режима движения потока. При ламинарном режиме (наблюдается при умеренных скоростях или в трубах малого диаметра) устанавливается параболич. профиль скоростей (wcp = 0,5wмакс), при турбулентном режиме (наблюдается при больших скоростях и сопровождается хаотич. пульсационными движениями масс жидкости) wcp = = 0,817wмакс. Сопротивление движению описывается ур-нием Дарси-Вейсбаха:https://www.medpulse.ru/image/encyclopedia/5/5/3/5553.jpeg , гдеhttps://www.medpulse.ru/image/encyclopedia/5/5/4/5554.jpeg-потеря давления на преодоление трения при движении потока в круглой цилиндрич. трубе, L-длина трубы, d-ee диаметр,https://www.medpulse.ru/image/encyclopedia/5/5/5/5555.jpeg-плотность жидкости,https://www.medpulse.ru/image/encyclopedia/5/5/6/5556.jpeg-коэф. сопротивления, определяемый режимом потока и шероховатостью стенок трубы. Для ламинарного режимаhttps://www.medpulse.ru/image/encyclopedia/5/5/7/5557.jpeg= 64/Re, где Re = =https://www.medpulse.ru/image/encyclopedia/5/5/8/5558.jpeg-число Рейнольдса,https://www.medpulse.ru/image/encyclopedia/5/5/9/5559.jpeg-динамич. вязкость; для турбулентного режимаhttps://www.medpulse.ru/image/encyclopedia/5/6/0/5560.jpeg, где А и n-постоянные (для гидравлически гладких труб А = 0,316, п = 0,25 в пределах Re от 4*103 до 105).

Профили скоростей обусловлены формой сечения потока. Ур-ние движения интегрируют для разл. случаев, имеющих практич. применение (движение жидкости в узких каналах, кольцевом зазоре, пленке и др.). Для описания реальных процессов используют обобщенные ур-ния гидродинамики, приведенные к безразмерному виду с помощью подобия теории, а также типовые гидродинамич. модели (в зависимости от структуры потоков в аппаратах, в к-рых осуществляется процесс). Модель полного вытеснения характеризуется поршневым движением потоков при отсутствии продольного перемешивания (напр., в трубчатых аппаратах с L/d > 20 при больших скоростях). Модель полного перемешивания отличается равномерным распределением частиц потока во всем объеме (напр., в реакторах с интенсивно работающей мешалкой). Промежут. модели (диффузионные, ячеечные) характеризуются частичным перемешиванием в продольном и радиальном направлениях.

Движение твердых частиц в жидкости или газе (внеш. задача) описывается с помощью упрощенных ур-ний Навье-Стокса (ползущее течение при Re < 1, течение в пограничном слое при больших числах Re). Закон сопротивления выражается зависимостьюhttps://www.medpulse.ru/image/encyclopedia/5/6/1/5561.jpeg , гдеhttps://www.medpulse.ru/image/encyclopedia/5/6/2/5562.jpeg-коэф. сопротивления. Для шарообразных частиц при Re < 1 величинаhttps://www.medpulse.ru/image/encyclopedia/5/6/3/5563.jpeg= = 24/Re; при развитой турбулентностиhttps://www.medpulse.ru/image/encyclopedia/5/6/4/5564.jpeg. Скорость своб. осаждения под действием силы тяжести по закону Стокса для одиночной шарообразной частицы woc = =https://www.medpulse.ru/image/encyclopedia/5/6/5/5565.jpeg(приhttps://www.medpulse.ru/image/encyclopedia/5/6/6/5566.jpegв области 10-4 < Reoc < 2). Для приближенного учета взаимного влияния частиц при стесненном осаждении суспензии в ф-лу Стокса вводится поправка, зависящая от объемной доли жидкости в суспензии. При расчете отстойников для сгущения суспензии различают режимы свободного и стесненного осаждения. При действии центробежной силы осаждение твердой фазы из жидкости или газа характеризуется центробежным числом Фруда-Fr (т. наз. фактором разделения)-отношением центробежной силы Gц к силе тяжести GT: Fru = Gц/Gт =https://www.medpulse.ru/image/encyclopedia/5/6/7/5567.jpeg, где r-радиус аппарата,https://www.medpulse.ru/image/encyclopedia/5/6/8/5568.jpeg=9,81 м/с2. Для разделения суспензий в центробежном поле применяют гидроциклоны и осадительные центрифуги, а для разделения пылегазовых систем-циклоны. Эффективность работы последних характеризуется величинойhttps://www.medpulse.ru/image/encyclopedia/5/6/9/5569.jpeg= (c1 — c2)/c1, где с1и с2-концентрации пыли в газе на входе в аппарат и выходе из него.

Для описания процессов, составляющих смешанную задачу гидродинамики, используются упрощенные ур-ния Навье-Стокса с соответствующими граничными условиями. Закон сопротивления для неподвижного слоя зернистых материалов аналогичен ур-нию Дарси - Вейсбаха при замене d на dэ-эквивалентный диаметр межзерновых каналов.

Г. п. разделения суспензий и аэрозолей (запыленных газов) фильтрованием (пропусканием через пористые перегородки, задерживающие дисперсную фазу) рассматривают отдельно. Теория фильтрования основана на эмпирич. законе Дарси.

Перспективы развития Г. п. определяются совр. достижениями теоретич. и прикладной гидроаэродинамики и широким использованием методов моделирования и вычислит. техники.

Лит.: Романков П. Г., Курочкина М. И., Гидромеханические процессы химической технологии, 3 изд., Л., 1982. П. Г. Романков, М.И. Курочкина.


N-галогенимиды Габриеля реакция Гадолинии Газгольдеры Газификация нефтяных остатков Газификация твердых топлив подземная Газификация твёрдых топлив Газо-жидкостная хроматография Газоадсорбционная хроматография (гах) Газоанализаторы Газов осушка Газов очистка Газов разделение Газов увлажнение Газовая коррозия Газовая постоянная Газовая хроматография Газовые гидраты Газовые конденсаты Газовый анализ Газойль Газопроницаемость Газотурбинные масла Газотурбинные топлива Газофазная полимеризация Газы Газы нефтепереработки Газы нефтяные попутные Галактуроновая кислота Галлий Галлийорганические соединения Галлия антимонид Галлия арсенид Галлия галогениды Галлия оксиды Галлия фосфид Галловая кислота Галогенальдегиды и галогенкетоны Галогенангидриды карбоновыхкислот Галогенантрахиноны Галогениды Галогенирование Галогеноспирты Галогентионфосфаты Галогенфосфаты Галогенфосфины Галогенфосфиты Галогенцианиды Галогены Галохромия Галургия Гальвани-потенциал Гальванопластика Гальваностегия Гальванотехника Ганглиоблокирующиесредства Ганглиозиды Гапто Гастрин Гафний Гваякол Гей-люссака законы Гексаметапол Гексаметилендиамин Гексаметилендиизоцианат Гексаметиленимин Гексан с6н14 Гексанитробензол Гексафторацетилацетон Гексафторацетон Гексафторбензол Гексафтордифенилолпропан Гексафторпропилен Гексафторпропиленоксид Гексахлор-1,3-циклопентадиен Гексахлорбензол Гексахлорксилолы Гексахлорциклогексан Гексахлорэтан Гексен Гексенал Гексил Гексоген Гексозы Гексокиназа Гели Гелий Гелиотропин Гелля -фольгарда -зелинского реакция Гельмгольца энергия Гем.. Гемицеллюлозы Гемоглобин Гемоцианины Ген Генетическая инженерия Генетический код Геном Генри закон Геометрические изомеры Геохимические классификации элементов Геохимические методы поисков полезных ископаемых Геохимические процессы Геохимия Гепарин Гептан Гептаналь Гераниол Гербе реакция Гербициды Германий Германийорганические соединения Германия оксиды Герметики Гесса закон Гестагены Гетероароматические соединения Гетерогенная система Гетерогенные реакции Гетерогенный катализ Гетеролитические реакции Гетерополисоединения Гетероциклические соединения Гетинакс Геттеры Гиацинт аль Гиббереллины Гиббса правило фаз Гиббса энергия Гиббса-дюгема уравнение Гибкие производства Гибридизация атомных орбиталей Гибридные методы анализа Гидантоин Гидр азиды карбоновых кислот Гидравлические жидкости Гидравлический транспорт Гидразиды арилсульфокислот Гидразин Гидразина замещенные органические Гидразоны Гидразосоединения Гидратация Гидратированный электрон Гидратроповый альдегид Гидратцеллюлозные волокна Гидраты Гидрдзильные радикалы Гидрид-ион Гидриды Гидрирование Гидрирования число Гидрогалогенирование Гидрогенизация жиров Гидрогенизация угля Гидрогенолиз Гидродеалкилирование Гидродеароматизация Гидродоочистка Гидрокортизон Гидрокрекинг Гидроксамовые кислоты Гидроксид-анион Гидроксиды Гидроксил Гидроксиламин Гидроксиламина производные органические Гидроксильное число Гидроксицитронеллаль Гидроксокомплексы Гидроксоний-ион Гидролазы Гидролиз Гидролизные производства Гидрометаллургия Гидромеханические процессы Гидрообессеривание Гидроочистка Гидропероксиды органические Гидросилилирование Гидросфера Гидротермальные процессы Гидротропы Гидрофильно-липофильный баланс Гидрофильность Гидрофобное взаимодействие Гидроформилирование Гидроформинг Гидрофосфорильные соединения Гидрофториды металлов Гидрохимия Гидрохинон Гидроцианирование Гиллеспи теория Гипероксиды Гиполипидемические средства Гипофосфиты неорганические Гипофосфиты органические Гипохлориты Гипс Гипсохромный сдвиг Гистидин Гистоны Гистохимия Глазурь Глиадины Гликоген Гликозиды Гликозиды сердечные Гликозилдиглицериды Гликозилтрансферазы Гликолевая кислота Гликоли Гликолиз Гликолипиды Гликопротеины Гликосфинголипиды Глимы Глины Глиоксаль Глиоксилатный цикл Глицеральдегидфосфатдегидрогеназа Глицериды Глицерин Глицериновый альдегид Глицидальдегид Глицидилметакрилат Глицидные эфиры Глицидол Глутаматдегидрогеназа Глутаматсинтаза Глутамин Глутаминовая кислота Глутаминсинтетаза Глутатион Глутатионредуктаза Глутатионтрансферазы Глюкагон Глюконеогенез Гольмий Гомберга - бахмана - хёя реакция Гомогенная система Гомогенные реакции Гомогенный катализ Гомолитические реакции Гомологизация Гомологический ряд Гомотопия Гонадолиберин Горение Гормоны тимуса Горнохимическое сырьё Горчичное масло Горючесть Горючие сланцы Горячие атомы Гофмана - лёфлера реакция Гофмана реакции Гравиметрия Гравитационная постоянная Градирни Гракаускаса реакция Гранаты синтетические Граничных орбиталей теория Гранулирование Гранулиты Графит Графита соединения Графитопласты Графов теория Гремучая ртуть Гремучий студень Гризеофульвин Гриньяра реакция Гротгуса-дрейпера закон Грохочение Грунтовки Гуанамино-формальдегидные смолы Гуанидин Гуанин Гуанозин Гуанозинтетрафосфат Гудрон Гука закон Гуминовые кислоты Гуттаперча Кристаллы висмута