Словарь научных терминов

Фотохромизм

ФОТОХРОМИЗМ, индуцированное светом обратимое превращение в-ва А (фотохрома) в продукт В, отличающийся спектром поглощения (окраской) и внутр. энергией. Если В -электронно-возбужденное состояние А , говорят о физическом Ф., если же В - форма, изомерная А в основном электронном состоянии, то это - химический Ф. Большой запас внутр. энергии у в-ва В является движущей силой обратного перехода https://www.medpulse.ru/image/encyclopedia/9/0/7/15907.jpeg или https://www.medpulse.ru/image/encyclopedia/9/0/8/15908.jpeg

Фотохррмные системы характеризуют спектрами поглощения А и В (или А*), квантовым выходом перехода https://www.medpulse.ru/image/encyclopedia/9/0/9/15909.jpeg т. наз. светочувствительностью f, временем темновой релаксации https://www.medpulse.ru/image/encyclopedia/9/1/0/15910.jpeg (самопроизвольного перехода https://www.medpulse.ru/image/encyclopedia/9/1/1/15911.jpeg в отсутствие освещения), квантовым выходом фоторазложения https://www.medpulse.ru/image/encyclopedia/9/1/2/15912.jpeg из-за участия А, А*, В в необратимых хим. р-циях.

Физический фотохромизм. Окрашивание в-ва или его обесцвечивание обусловлено квантовыми переходами между возбужденными состояниями молекул. Среда (матрица) влияет на время темновой релаксации вследствие тушения возбужденных состояний: в жидких средахhttps://www.medpulse.ru/image/encyclopedia/9/1/3/15913.jpegсильно уменьшается из-за высокой скорости диффузии, в твердых телах значение https://www.medpulse.ru/image/encyclopedia/9/1/4/15914.jpeg определяется внутримол. процессами перераспределения энергии между разл. видами возбуждения. Для первого синг-летного возбужденного состояния S1 времяhttps://www.medpulse.ru/image/encyclopedia/9/1/5/15915.jpegсоставляет 10-6 -10-10 с, для триплетного возбужденного состояния T время https://www.medpulse.ru/image/encyclopedia/9/1/6/15916.jpeg принимает значения от 10-5 до 10 с. Для наблюдения фотохромного эффекта на уровне S1 требуется интенсивность облучения 102 - 105 Э/(м2·с), 1 Э (эйнштейн) = 6,02· 1023 фотонов. Для фотохромного эффекта на уровнях T необходимы интенсивности на 5 порядков меньше. Поэтому практич. применение находят в осн. системы с триплет-триплетными переходами (T-T-поглощение, или Т-Т-переходы). Светочувствительность Т-Т-фотохромов определяется соотношением коэффициентов T-T-поглощения на длинах волн возбуждения и активации, квантовыми выходами образования триплетных состояний и их дезактивации под действием света. Для повышения светочувствительности спектры Т-Т-поглощения не должны перекрываться со спектрами синглет-синглетного поглощения. У известных Т-Т-фотохромов переходы https://www.medpulse.ru/image/encyclopedia/9/1/7/15917.jpeg лежат в области 300-450 нм, а переходы T1-Tn - при 300-700 нм. Наиб. важные физ. фотохромы - конденсированные полициклич. ароматич. углеводороды, нек-рые гете-роциклы и их замещенные.

Химический фотохромизм основан на изомеризации (обычно цис-транс-изомеризации), таутомерных переходах, разрывах и образовании новых хим. связей, перициклич. внутри- и межмол. превращениях; известны моно- и бимол. фотохромные процессы. Кроме спектров поглощения и испускания, у хим. фотохромов могут изменяться показатель преломления, диэлектрич. проницаемость, растворимость, вязкость, электрич. проводимость, фотопроводимость и др. св-ва, что определяет многообразие их практич. применения.

У фотохромных 1,2-диарилзамещенных олефинов, азосое-динений, азометинов цис-изомер поглощает в более коротковолновой области (на 10-30 нм), чем транс-изомер. цис-транс-Изомеризация проходит через возбужденные Т1состояния, к-рые имеют минимум энергии при угле поворота связи ~ 90 °; цис-T1 и транс-T1 состояния переходят в общий Т1-уровень ("фантом-триплет"), из него идет дезактивация в основные состояния цис-S0 и транс-S0. T. к. уровень цис-Т1 лежит выше по энергии, чем уровень транс-Т1 то квантовый выход транс-цис-изомеризации зависит от т-ры, тогда как квантовый выход цис-транс-изомеризации от т-ры не зависит, т. е. переход цис-T1https://www.medpulse.ru/image/encyclopedia/9/1/8/15918.jpeg транс-Т1 экзотермичен. В стационарном состоянии при прямом (без сенсибилизаторов) фотохромном процессе отношение концентраций цис- и транс-изомеров определяется отношением произведения коэф. поглощения транс-изомера при длине волны облучения на квантовый выход трансhttps://www.medpulse.ru/image/encyclopedia/9/1/9/15919.jpegцис перехода к соответствующему произведению для цис-изомера https://www.medpulse.ru/image/encyclopedia/9/2/0/15920.jpeg . При сенсибилизир. Ф. в систему вводят в-во с энергией возбужденного состояния большей, чем у транс- и цис-изомеров. В этом случае в стационарном состоянии отношение концентраций транс- и цис-изомеров не зависит от козф. поглощения и определяется отношением констант скорости процессов перехода в основное состояние транс-https://www.medpulse.ru/image/encyclopedia/9/2/1/15921.jpeg при этом квантовые выходы связаны соотношением:

jцис -> транс + j транс->цис = j s1-->T1

Тиоиндигоиды и др. олефины с циклич. заместителями отличаются большим смещением поглощения цис-изомера в коротковолновую область (до 150 нм), высоким уровнем поглощения e макс(~ 5 · 104), большими квантовыми выходами переходов транс —> цис и цис -> транс. Главное преимущество тиоиндигоидов как фотохромных систем - их способность к очень большому числу циклов изомеризации (ок. 20000), что связано с крайне низким квантовым выходом фоторазложения.

Ф. наблюдается у большого числа таутомерных систем, для к-рых фототаутомерия м. б. записана в виде схемы:

Z-X-C123=Y——>X = C1-C2 = C3-Y-Z

Прототропная фототаутомерия (Z = H) типична для о-алкил-арилкарбонильных соед. (X = С, Y = О), салициланилидов (X = О, Y = NR), о-гидроксиароматич. соед. (X = О, Y = Ar) и др., напр.:

https://www.medpulse.ru/image/encyclopedia/9/2/2/15922.jpeg

Если глубокоокрашенная форма имеет хиноидное строение, она быстро термо- или фотоизомеризуется обратно. У арилоксихинонов (X = Y = O, С1, С2, С3- части ароматич. или гетероароматич. ядер, Z = Ar) при фотолизе происходит термообратимая фотохромная миграция арила:

https://www.medpulse.ru/image/encyclopedia/9/2/3/15923.jpeg

В ряду бензотиофеновых производных известна фотоаци-лотропия (X = О, Y = N, Z = Ac). Перемещения Z происходят чаще всего внутримолекулярно, через трудно идентифицируемые переходные состояния. Первичные продукты могут ионизироваться, образуя окрашенные мезомерные ионы; это характерно, в частности, для нитроарил(гетарил)алканов.

Изучены фото-, термо- и сольватохромные спиропираны, содержащие 1 или 2 пирановых ядра и получаемые на основе разл. гетероциклов, производных салицилового альдегида, их аналогов и замещенных (см. Спиросоединения). Их достоинства: простота синтеза, отсутствие окраски у циклич. формы и интенсивный, часто глубокий цвет у мероцианиновой формы. При больших смещениях поглощения в коротковолновую область и высоких коэф. экстинкции эти в-ва часто отличаются большими квантовыми выходами фоторазложения, что сужает области их применения.

Аналогично спиропиранам обратимое раскрытие гетеро-цикла наблюдается у фотохромных хроменов, тиохроменов, селенохроменов, дигидрохинолинов. Окрашенная орто-хи-ноидная форма стабилизируется при аннелировании ароматич. цикла. Реакционноспособными у разл. соед. могут быть S1 - и T1состояния.

К бимол. Ф. относятся, напр., р-ции фотодимеризации полициклич. ароматич. соед. по мезо-положениям, стильбе-нов и их гетероаналогов, проявляющиеся как резкий гипсо-хромный сдвиг спектра поглощения.

Фотохромные системы используются как светофильтры, светозащитные устройства, актинометры, дозиметры, для создания рельефных и плоскостных изображений, аккумуляции солнечной энергии; на их основе созданы устройства для хранения информации.

Лит.: Барачевский В.А., Дашков Г.И., Цехомский В.А., Фотохромизм и его применение, M., 1977; Фотохимические процессы в слоях, под ред. А.В. Ельцова, Л., 1978; Органические фотохромы, под ред. А.В. Ельцова, Л., 1982; Photochromism: molecules and systems, eds. H. Durr, Т.Н. Bouas-Lauren, Amst., 1990. A.B. Ельцов.


1,10-фенантролин 3-фосфоглицераткиназа N-фенилнафтиламины Фаз правило Фазовое равновесие Фазовые переходы Фазовый анализ Фарадея законы Фарадея постоянная Фарадея эффект Фармакокинетика Фармацевтическая химия Фарнезол Фарфор Фаянс Фаянса - пакета правило Фелинга реактив Фелландрены Феназепам Феназин Фенамин Фенантрен Фенетидины Фенетол Фенилаланин Фенилацетальдегид Фенилацетилен Фенилгидразин Фенилендиамины Фенилизоцианат Фенилин Фенилуксусная кислота Фенилфенолы Фенилфлуорон Фенилхлорсиланы Фенилэтиламины Фенилэтиловый спирт Феноксазин Фенол Феноло-альдегидные смолы Феноло-формальдегидные смолы Фенолсульфокислоты Фенолы Фенольные смолы Фенопласты Фенотиазин Фентоламин Фенхены Фенхол Фенхон Ферментативный катализ Ферментсодержащие волокна Фермий Феромоны Ферредоксин Ферримагнетики Ферриты Ферромагнетики Ферросплавы Ферроцен Фертильные материалы Фибриллированные нити Физико-химическая гидродинамика Физико-химическая механика Физико-химический анализ Физическая химия Физические методы анализа Физостигмин Фиксаналы Фиксирование фотографического изображения Фильтрование Финкельштайна реакция Фитогормоны Фиттига реакция Фишера - тропша синтез Фишера - хеппа перегруппировка Фишера реактив Фишера реакция Фишера формулы Флавиновые коферменты Флавон Флавоноиды Флокулянты Флокуляция Флори-q-температура Флорион Флороглюцин Флотация Флуорантен Флуорен Флуоресцентные красители Флуоресцентные отбеливатели Флуоресцентный анализ Флуоресценция Флуоресцирующие красители Флюорит Фолацин Фолиевая кислота Фолина реакция Фолион Фопурин Формазаны Формалин Формальдегид Формамид Форманилид Форматирование Формиаты Форполимеры Фосген Фосгенирование Фосфазосоединения Фосфакол Фосфат-ацетилтрансфераза Фосфатидилглицерины Фосфатидилинозит Фосфатидилсерины Фосфатидилхолины Фосфатидилэтаноламины Фосфатидовые кислоты Фосфаты конденсированные Фосфаты неорганические Фосфаты органические Фосфиды Фосфиналкилены Фосфинаты Фосфинистые кислоты Фосфиниты Фосфиновые кислоты Фосфиноксиды и фосфинсульфиды Фосфины Фосфиты неорганические Фосфиты органические Фосфоглицериды Фосфодиэстеразы Фосфоенолпируват-карбоксикиназа Фосфоинозитиды Фосфолипазы Фосфоназо Фосфонат-фосфатная перегруппировка Фосфонаты Фосфониевые соединения Фосфонистые кислоты Фосфониты Фосфоновые кислоты Фосфор Фосфора галогениды Фосфора кислоты Фосфора оксиды Фосфора тиохлорид Фосфора хлориды Фосфораны Фосфоресцентный анализ Фосфоресценция Фосфорилирование Фосфористая кислота Фосфористой кислоты амиды Фосфоритная мука Фосфориты Фосфорная кислота Фосфорноватая кислота Фосфорноватистая кислота Фосфорной кислоты гексаметилтриамид Фосфорные удобрения Фосфорорганические полимеры Фосфорорганические соединения Фосфорсодержащие гетероциклы Фосфосфинголипиды Фотобумага Фотографическая Фотографические материалы Фотографические эмульсии Фотография цветная Фотография чёрно-белая Фотоионизация Фотокатализ Фотолиз Фотолитография Фотометрический анализ Фотонно-нейтронный анализ Фотоокисление Фотоперенос протона Фотоперенос электрона Фотопластинки Фотоплёнки Фотополимеризация Фоторезисты Фотосинтез Фотохимические реакции Фотохимия Фотохромизм Фотоэлектронная спектроскопия Фотоэлектрохимия Фотоэмульсионные микрокристаллы Фрагментации реакции Франций Фреоны Фреттинг-коррозия Фриделя - крафтса реакция Фридлендера синтез Фрикционные материалы Фриса перегруппировка Фруктаны Фруктоза Фталазин Фталевая кислота Фталевые кислоты Фталевый ангидрид Фталексоны Фталид Фталимид Фталогены Фталодинитрилы Фталоцианиновые красители Фталоцианины Фталоцианогены Фтивазид Фтор Фторакрилатные каучуки Фторволокна Фториды Фторирование Фтористоводородная кислота Фторкаучуки Фторлоны Фторобораты Фторолефины Фторопластовые лаки Фторопласты Фторорганические соединения Фторосиликаты Фторофосфаты Фторсилоксановые каучуки Фтортензиды Фторуглepoды Фторуксусная кислота Фторурацил Фугитивность Фузидиевая кислота Фукоза Фуксины Фуллерены Фульвены Фумарат-гидратаза Фумаровая кислота Фумиганты Функции кислотности Функциональная группа Функциональность полимеров Функциональный анализ Фурадонин Фуразан Фуран Фурановые смолы Фурилдиоксим Фуриловые смолы Фуроксан Фуросемид Фурфуриловый спирт Фурфурол Фурье-спектроскопия