Словарь научных терминов

Вода

ВОДА (оксид водорода) Н2О, мол. м. 18,016, простейшее устойчивое соед. водорода с кислородом. Жидкость без запаха, вкуса и цвета.

Распространение в природе. В. - одно из самых распространенных на Земле соединений. Молекулы В. обнаружены в межзвездном пространстве. В. входит в состав комет, большинства планет солнечной системы и их спутников. Кол-во В. на пов-сти Земли оценивается в 1,39*1018 т, большая часть ее содержится в морях и океанах. Кол-во доступных для использования пресных В. в реках, озерах, болотах и водохранилищах составляет 2*104 т. Масса ледников Антарктики, Антарктиды и высокогорных районов 2,4*1016т, примерно столько же имеется подземных вод, причем только небольшая их часть - пресные. В глубинных слоях Земли содержится значительно больше (повидимому, не менее, чем на порядок) В., чем на пов-сти. В атмосфере находится ок. 1,3*1013 т В. Вода входит в состав мн. минералов и горных пород (глины, гипс и др.), присутствует в почве, является обязат. компонентом всех живых организмов.

Изотопный состав. Существует 9 устойчивых изотопных разновидностей В. Содержание их в пресной воде в среднем следующее (мол. %): 1Н216О - 99,13; 1Н218О - 0,2; 1Н2170-0,04; 1Н2О16О-0,03; остальные пять изотопных разновидностей присутствуют в В. в ничтожных кол-вах. Кроме стабильных изотопных разновидностей, в В. содержится небольшое кол-во радиоактивного 3Н2 (или Т2О). Изотопный состав прир. В. разного происхождения неск. варьирует. Особенно непостоянно отношение 1Н/2Н: в пресных В.-в среднем 6900, в морской В.-5500, во льдах - 5500-9000. По физ. свойствам D2O заметно отличается от обычной В. (см. Тяжелая вода). В., содержащая 18О, по св-вам ближе к В. с 16О.

Строение молекулы и физические свойства. Атомы водорода и кислорода в молекуле В. расположены в углах равнобедренного треугольника с длиной связи О—Н 0,0957 нм; валентный угол Н—О—Н 104,5°; дипольный момент 6,17*10-30 Кл*м; поляризуемость молекулы 1,45*10-3 нм3; средний квадрупольный момент — 1,87*10-41 Кл*м2, энергия ионизации 12,6 эВ, сродство к протону 7,1 эВ. При взаимод. молекулы В. с др. атомами, молекулами и ионами, в т.ч. с другими молекулами В. в конденсир. фазах, эти параметры изменяются.

Нек-рые параметры, характеризующие св-ва В. в разных агрегатных состояниях при атм. давлении, приведены ниже (см. также табл. 1 и рис. 1, на к-ром указаны области существования разл. модификаций льда):
https://www.medpulse.ru/image/encyclopedia/4/0/8/4408.jpeg

Физ. свойства В. аномальны. Плавление льда при атм. давлении сопровождается уменьшением объема на 9%. Температурный коэф. объемного расширения льда и жидкой воды отрицателен при т-pax соотв. ниже -210°С и 3,98 °С. Теплоемкость С° при плавлении возрастает почти вдвое и в интервале 0-100°С почти не зависит от т-ры (имеется минимум при 35 °С). Минимум изо-термич. сжимаемости (44,9*10-11 Па-1), наблюдаемый при 46°С, выражен довольно четко. При низких давлениях и т-рах до 30 °С вязкость В. с ростом давления падает. Высокие диэлектрич. проницаемость и диполъный момент В. определяют ее хорошую растворяющую способность по отношению к полярным и ионогенным в-вам. Благодаря высоким значениям С°,https://www.medpulse.ru/image/encyclopedia/4/0/9/4409.jpeg иhttps://www.medpulse.ru/image/encyclopedia/4/1/0/4410.jpeg вода-важный регулятор климатич. условий на земле, стабилизирующий т-ру на ее пов-сти. Кроме того, близость угла Н—О—Н к тетраэдрическому (109° 28') обусловливает рыхлость структур льда и жидкой воды и, как следствие, аномальную зависимость плотности от т-ры. Поэтому не промерзают до дна крупные водоемы, что делает возможным существование в них жизни.

Табл. 1 - СВОЙСТВА ВОДЫ И ВОДЯНОГО ПАРА, НАХОДЯЩИХСЯ В РАВНОВЕСИИ
https://www.medpulse.ru/image/encyclopedia/4/1/1/4411.jpeg

https://www.medpulse.ru/image/encyclopedia/4/1/2/4412.jpeg

Рис. 1. Фазовая диаграмма воды.

Взаимодействие между молекулами воды. Структура конденсированных фаз. Молекулы В., обладая значит. ди-польным моментом, сильно взаимод. друг с другом и полярными молекулами др. в-в. При этом атомы водорода могут образовывать водородные связи с атомами О, N, F, Cl, S и др. В водяном паре при невысоких т-рах и умеренных давлениях присутствует небольшое кол-во (ок. 1% при т-ре кипения и атм. давлении) димеров В. (для них ~ 15 кДж/моль), расстояние между атомами кислородаhttps://www.medpulse.ru/image/encyclopedia/4/1/3/4413.jpeg ~ 0,3 нм. В конденсиров. фазах каждая молекула В. образует четыре водородные связи: две - как донор протонов и две - как акцептор протонов. Средняя длина этих связей в кристаллич. модификациях льда и кристаллогидратах ок. 0,28 нм. Угол О—Н...О стремится к 180°. Четыре водородные связи молекулы В. направлены приблизительно к вершинам правильного тетраэдра (рис. 2).

Структура модификаций льда представляет собой трехмерную сетку. В плотных модификациях VI-VIII, устойчивых при высоких давлениях, можно даже выделить две такие сетки, "вставленные" одна в другую. В модификациях, существующих при низких давлениях (льды Ih и Iс), связи Н—О—Н почти прямолинейны и направлены к вершинам практически правильного тетраэдра. В модификациях II-VI связи искривлены и углы между ними отличаются от тетраэдрического, что обусловливает увеличение плотности по сравнению с плотностью обычного льда.
https://www.medpulse.ru/image/encyclopedia/4/1/4/4414.jpeg

Рис. 2. Схема тетраэдрич. координации молекулы воды; сплошные линии - ковалентные связи; пунктирные линии - водородные связи.

Но плотность модификаций II-VI значительно ниже той, к-рой мог бы обладать лёд при плотной упаковке молекул. Только в модификациях VII и VIII достигается достаточно высокая плотность упаковки: в их структуре две правильные сетки, построенные из тетраэдров (аналогичные существующим в кубич. низкотемпературном льде Iс, изоструктурном алмазу), вставлены одна в другую; при этом сохраняется система прямолинейных водородных связей, а координац. число по кислороду удваивается и достигает 8. Расположение атомов кислорода во льдах VII и VIII подобно расположению атомов вhttps://www.medpulse.ru/image/encyclopedia/4/1/5/4415.jpegжелезе и многих др. металлах. В обычном (Ih) и кубическом (Iс) льдах, а также во льдах HI, V-VII ориентация молекул не определена: оба ближайших к атому О протона образуют с ним ковалентные связи, к-рые м. б. направлены к любым двум из четырех соседних атомов кислорода в вершинах тетраэдра. Диэлектрич. проницаемость этих модификаций высока (выше, чем у жидкой В.). Модификации II, VIII и IX ориентационно упорядочены; их диэлектрич. проницаемость низка (ок. 3). Лед VIII представляет собой упорядоченный по размещению протонов вариант льда VII, а лед IX - льда III. Плотности ориентационно упорядоченных модификаций (VIII, IX) близки к плотностям соответствующих неупорядоченных (VII, III).

Трехмерная сетка водородных связей, построенная из тетраэдров, существует и в жидкой В. во всем интервале от т-ры плавления до критической. Увеличение плотности при плавлении, как и в случае плотных модификаций льда, объясняется искривлением водородных связей и отклонением углов между ними от тетраэдрических. Искривление связей увеличивается с ростом т-ры и давления, что приводит к возрастанию плотности. С др. стороны, при нагр. средняя длина водородных связей становится больше, в результате чего плотность уменьшается. Совместное действие двух факторов объясняет наличие максимума плотности В. при 3,98 °С.

Химические свойства. Лишь незначит. доля молекул (при 25°С - примерно 1 на 5*109) подвергается электролитич. диссоциации по схеме: Н2Оhttps://www.medpulse.ru/image/encyclopedia/4/1/6/4416.jpegН+ + ОН-. Протон Н + в водной среде, взаимодействуя с молекулами В., образует Н3О+ , объединяющийся с 1 молекулой Н2О в H5O2+. Расстояние О...О в таких комплексах заметно короче длины нормальной водородной связи между нейтральными молекулами. Но поскольку протон, по-видимому, находится не точно посредине этой укороченной связи, а ближе к одному из атомов О, можно считать, что в В. существует гидратированный ион оксония Н3О+ . Это явление играет большую роль в хим. процессах, происходящих в разл. системах, в т. ч. биологических. В частности, диссоциация В. - причина гидролиза солей слабых к-т и (или) оснований. Концентрация ионов Н+ и связанная с ней концентрация ионов ОН- -важные характеристики водных р-ров (см. Водородный показатель). Степень электролитич. диссоциации В. заметно возрастает при повышении т-ры.

Образование В. из элементов по р-ции Н2 + 1/2O2https://www.medpulse.ru/image/encyclopedia/4/1/7/4417.jpegН2O (https://www.medpulse.ru/image/encyclopedia/4/1/8/4418.jpegHoобр -242 кДж/моль для пара и -286 кДж/моль для жидкой В.) при низких т-рах в отсутствие катализаторов происходит крайне медленно, но скорость р-ции резко возрастает при повышении т-ры, и при 550 °С она происходит со взрывом. При снижении давления и возрастании т-ры равновесие сдвигается влево. Степень термич. диссоциации В. (%) при 100 кПа: 0,034 (1015°С), 0,74 (1711 °С), 8,6 (2215°С) и 11,1 (2483°С). Под действием УФ-излучения происходит фотодиссоциация В. на ионы Н+ и ОН-. Ионизирующее излучение вызывает радиолиз В. с образованием Н2, Н2О2 и своб. радикаловhttps://www.medpulse.ru/image/encyclopedia/4/1/9/4419.jpeghttps://www.medpulse.ru/image/encyclopedia/4/2/0/4420.jpeghttps://www.medpulse.ru/image/encyclopedia/4/2/1/4421.jpeg ; радиац. выход - примерно 4 распавшиеся молекулы на каждые 1,6*10-17 Дж поглощенной энергии излучения.

В.-реакционноспособное соединение. Она окисляется атомарным кислородом: Н2О + О -> Н2О2. При взаимод. В. с F2 образуются HF, а также О, О2, О3, Н2О2, F2O и др. соединения. С остальными галогенами при низких т-рах В. реагирует с образованием смеси к-т HHal и ННаlO. При обычных условиях с В. взаимод. до половины растворенного в ней С12 и значительно меньшие кол-ва Вr2 и 12. При повыш. т-рах хлор и бром разлагают В. с образованием HHal и О2. При пропускании паров В. через раскаленный уголь она разлагается и образуется т. наз. водяной газ: Н2О + Сhttps://www.medpulse.ru/image/encyclopedia/4/2/2/4422.jpeg СО + Н2. При повыш. т-ре в присут. катализатора В. реагирует с СО, СН4 и др. углеводородами, напр.: Н2О + СОhttps://www.medpulse.ru/image/encyclopedia/4/2/3/4423.jpeg СО2 + Н2 (кат. Fe); Н2О + СН4https://www.medpulse.ru/image/encyclopedia/4/2/4/4424.jpeg СО + ЗН2 (кат. Ni или Со). Эти р-ции используют для пром. получения Н2. Перспективны для его произ-ва также термохим. способы разложения В. (см. Водород, Водородная энергетика). Фосфор при нагр. с В. под давлением в присут. катализатора окисляется в метафосфорную к-ту: 6Н2О + ЗР -> 2НРО3 + 5Н2. Вода взаимод. со мн. металлами с образованием Н2 и соответствующего гидроксида. Со щелочными и щел.-зем. металлами (кроме Mg) эта р-ция протекает уже при комнатной т-ре. Менее активные металлы разлагают В. при повыш. т-ре, напр. Mg и Zn-выше 100°С, Fe - выше 600°С (2Fe + ЗН2О -> Fe2O3 + 3H2). При взаимод. с В. многих оксидов образуются к-ты или основания. В. может служить катализатором, напр. щелочные металлы и водород реагируют с хлором только в присут. следов В. Иногда В.-каталитич. яд, напр. для железного катализатора при синтезе NH3.

Способность молекул В. образовывать трехмерные сетки водородных связей позволяет ей давать с инертными газами, углеводородами, СО2, С12, (СН2)2О, СНС13 и многими др. в-вами т. наз. газовые гидраты.

Вода как растворитель. В. хорошо растворяет мн. полярные и диссоциирующие на ионы в-ва. Обычно р-римость возрастает с увеличением т-ры, но иногда температурная зависимость имеет более сложный характер. Так, р-римость мн. сульфатов, карбонатов и фосфатов при повышении т-ры уменьшается или сначала повышается, а затем проходит через максимум. Р-римость малополярных в-в (в т. ч. газов, входящих в состав атмосферы) в В. низкая и при повышении т-ры обычно сначала снижается, а затем проходит через минимум. С ростом давления р-римость газов возрастает, проходя при высоких давлениях через максимум. Многие в-ва, растворяясь в В., реагируют с ней. Напр., в р-рах NH3 могут присутствовать ионы NH4 (см. также Гидролиз). Между растворенными в В. ионами, атомами, молекулами, не вступающими с ней в хим. р-ции, и молекулами В. существуют не разрушающие их ион-дипольные и межмол. взаимодействия (см. Гидратация).

Природная вода. Представляет собой сложную многокомпонентную систему, в состав к-рой входят минер. в-ва, газы, а также коллоидные и крупнодисперсные частицы, в т. ч. микроорганизмы. По величине минерализации (г/л) различают след. природные В.: ультрапресные - до 0,2, пресные - 0,2-0,5, слабоминерализованные - 0,5-1,0, солоноватые - 1-3, соленые - 3-10, с повыш. соленостью - 10-35, переходные к рассолам - 35-50, рассолы - более 50. Макрокомпонентами прир. В. обычно являются Са, Mg, Na, К, Fe (катионогенные В.), Si, С, S, C1 (анионогенные В.). К микрокомпонентам прир. В. относятся редкие и рудные элементы, напр. В, Li, Rb, Cu, Zn, Bi, Be, W, U, Br, I и др.

Осн. газы, содержащиеся в прир. В., - СО2, N2 (характерны как для поверхностных, так и для глубинных условий), СН4, СО, Н2 (более типичны для подземных В. и для В. вулканич. активных областей). Растворенные в В. компоненты находятся в равновесии, образуя комплексы разл. состава. Данные о составе нек-рых прир. В. приведены в табл. 2.

Табл. 2-СОСТАВ ПРИРОДНЫХ ВОД
https://www.medpulse.ru/image/encyclopedia/4/2/5/4425.jpeg

Питьевая вода. Общее число микроорганизмов в 1 мл питьевой В. должно быть не выше 100, число бактерий группы кишечных палочек (коли-индекс) - не более 3. Концентрация хим. в-в, к-рые встречаются в прир. В. или добавляются к В. при ее обработке (см. Водоподготовка), не должна превышать (мг/л):
https://www.medpulse.ru/image/encyclopedia/4/2/6/4426.jpeg

Содержание примесей, к-рые влияют на органолептич. св-ва В. и встречаются в прир. В. или добавляются к В. при ее обработке, не должно превышать (мг/л):
https://www.medpulse.ru/image/encyclopedia/4/2/7/4427.jpeg

Общая жесткость питьевой В. должна быть не выше 7,0 ммоль/л, сухой остаток - 1000 мг/л, рН - от 6,0 до 9,0. Для питьевой В., подаваемой без спец. обработки, по согласованию с органами санитарно-эпидемиологич. службы допускаются след. показатели: сухой остаток - до 1500 мг/л, общая жесткость - до 10 ммоль/л, содержание железа и марганца - соотв. до 1 и до 0,5 мг/л.

Техническая вода. В., расходуемую пром. предприятиями, принято наз. технической. Ее применяют гл. обр. в кач-ве охлаждающего агента, транспортирующей среды для сыпучих материалов (напр., гидротранспорт золы на тепловых электростанциях), р-рителя и др. В целом по всем отраслям пром-сти 70-75% от общего расхода В. применяют как хладагент по циркуляц. схеме. В этом случае В. лишь нагревается и практически не загрязняется. Главные источники загрязнения охлаждающей В. систем циркуляц. водоснабжения - В., добавляемая в системы для восполнения неизбежных потерь, и атм. воздух, из к-poro вымываются в охладителях В. взвешенные в-ва и газы, р-римые в воде.

Осн. ионами, к-рые могут приводить к отложениям минер, солей в системах циркуляц. водоснабжения, являются анионы НСО3-, CO32-, ОН-, SOl42-, PO43-, SiO32-, а также катионы Са2+, Mg2+ , Fe2+,3+ , A13+ , Zn2+ . Наиб. часто встречающийся компонент солевых отложений - СаСО3 (см. Жесткость воды). Предотвратить отложение карбонатов можно подкислением воды H2SO4 или НС1, ее рекарбонизацией (обычно обработка топочными газами, содержащими СО2), действием полифосфатов (NaPO3)6 и Na5P3O10, орг. фосфатов и др. Для предотвращения (уменьшения) коррозии труб и теплообменного оборудования в В. добавляют ингибиторы коррозии: полифосфаты, ингибиторы на основе хромато-цинковых смесей и др. Для предупреждения обрастания оборудования бактериями В. в основном хлорируют (содержание С12 до 5 мг/л), а иногда озонируют.

Лечебные воды. В кач-ве лечебных применяют прир. В., содержащие значит. кол-во минер, солей, газы, нек-рые элементы и др. (подробнее см. Минеральные воды).

Лит.: Хорн Р., Морская химия, пер. с англ., М., 1972; Эйзенберг Д., Кауцман В., Структура и свойства воды, пер. с англ., Л., 1975; Самойлов О. Я., Структура водных растворов электролитов и гидратация ионов, М., 1957 Алекин О. А., Основы гидрохимии, Л., 1970; Синюков В. В., Структура одноатомных жидкостей, воды и водных растворов электролитов, М., 1976; Унифицированные методы исследования качества вод, ч. 1, кн. 2-3. Методы химического анализа вод, М., 1977; Кульский Л.А., Даль В.В., Чистая вода и перспективы ее сохранения, К., 1978; Возная Н. Ф., Химия воды и микробиология, 2 изд., М., 1979; Перельман А.И., Геохимия природных вод, М., 1982; Маленков Г. Г., в кн.: Физическая химия. [Ежегодник], М., 1984, с. 41-76. Г. Г. Маленков. С. В. Яковлев, В. А. Гладков.


1-винил-2-пирролидон В массе Вагнера реакция Вагнера-меервейна перегруппировки Вазелины Вазопрессин Вакуум Вакуумметры Вакуумформование полимеров Валентность Валентные углы Валентных связей метод Валериановые кислоты Валин Валлаха перегруппировка Вальденовское обращение Вальтерилацетат Вальцевание полимеров Ван слайка метод Ван-дер-ваальса уравнение Ван-дер-ваальсово взаимодействие Ван-дер-ваальсовы кристаллы Ван-дер-ваальсовы радиусы Ванадатометрия Ванадаты Ванадий Ванадийорганические соединения Ванадия галогениды Ванадия оксиды Ванилаль Ванилин Вариантность системы Вариационный метод Велера реакция Верапамил Вербенол и вербеной Вердазильные радикалы Вестерберга реакция Весы Ветиверилацетат Ветиверкетон Ветинон Вещества Вещество Взвешивание Взрыв Взрывоопасность Взрывчатые вещества Вибрационная техника Вильгеродта реакция Вильсмайера реакция Вильямсона синтез Винилазолы Винилацетат Винилацетилен Винилиденфторид Винилиденхлорид Винилиденхлорида сополимеры Виниловые мономеры Виниловые эфиры Виниловый спирт Винилогия Винилпиридиновые каучуки Винилпиридины Винилсульфоновые красители Винилфторид Винилхлорид Винилхлорида сополимеры Винипласт Винные кислоты Вириальное уравнение Вирирование фотографического изображения Висбрекинг Вискоза Вискозиметрия Вискозные волокна Висмут Висмута галогениды Висмута оксиды Висмута сульфиды Висмутолы Висмуторганические соединения Витамин Витамин d Витамин u Витамин в12 Витамин в2 Витамин в3 Витамин в6 Витамин вс Витамин е Витамин к Витамин н Витамин рр Витамин с Витамины Виттига реакция Виц.. Влагомеры и гигрометры Влагопроницаемость Влажность Внедрения реакция Внутреннее вращение молекул Внутренняя энергия Внутрирезонаторная лазерная спектроскопия Вода Водно-угольные суспензии Воднодисперсионные краски Водоподготовка Водоразбавляемые лакокрасочные материалы Водород Водорода пероксид Водородная энергетика Водородный показатель Водородоподобные атомы Водостойкость Водоэмульсионные краски Возбужденные состояния Возгораемость Воздух Воздуха разделение Возмущений теория Волновая функция Волокна природные Волокна химические Волокниты Вольта-потенциал Вольтамперометрия Вольфа перегруппировка Вольфрам Вольфрама галогениды Вольфрама гексафторид Вольфрама карбиды Вольфрама оксиды Вольфрама сплавы Вольфрама сульфиды Вольфраматы Вольфрамовые кислоты Вольфраморганйческие соединения Воля-циглера реакция Воски Воспламенение Воспламенение в пожарном деле Воспламенительные составы Восстановители Восстановительное аминйрование Восстановление Вращательные спектры Вревского законы Всесоюзное химическое общество Вспышки температура Втор.. Второе начало термодинамики Вуда сплав Вудворда реактив Вудворда реакция Вудворда-хофмана правила Вулканизация Вымораживание Выпаривание Вырождение энергетических уровней Высаливание Высокомодульные волокна Высокомолекулярные соединения Высокочастотное титрование Высокоэластическое состояние Высшие жирные кислоты Высшие жирные спирты Выщелачивание Вюрца реакция Вяжущие лекарственные средства Вяжущие материалы Вязкость Вязкотекучее состояние