Словарь научных терминов

Вольтамперометрия

ВОЛЬТАМПЕРОМЕТРИЯ, совокупность электрохим. методов исследования и анализа, основанных на изучении зависимости силы тока в электролитич. ячейке от потенциала погруженного в анализируемый р-р индикаторного микроэлектрода, на к-ром реагирует исследуемое электрохимически активное (электроактивное) в-во. В ячейку помещают помимо индикаторного вспомогат. электрод со значительно большей пов-стью, чтобы при прохождении тока его потенциал практически не менялся (неполяризующийся электрод). Разность потенциалов индикаторного и вспомогат. электродов Е описывается ур-нием Е = U — IR, где U - поляризующее напряжение, R-сопротивление р-ра. В анализируемый р-р вводят в большой концентрации индифферентный электролит (фон), чтобы, во-первых, уменьшить величину R и, во-вторых, исключить миграционный ток, вызываемый действием электрич. поля на электроактивные в-ва (устар. - деполяризаторы). При низких концентрациях этих в-в омическое падение напряжения IR в р-ре очень мало. Для полной компенсации омического падения напряжения применяют потенциостатирование и трехэлектродные ячейки, содержащие дополнительно электрод сравнения. В этих условияхhttps://www.medpulse.ru/image/encyclopedia/5/1/0/4510.jpeg

В кач-ве индикаторных микроэлектродов используют стационарные и вращающиеся - из металла (ртуть, серебро, золото, платина), углеродных материалов (напр., графит), а также капающие электроды (из ртути, амальгам, галлия). Последние представляют собой капилляры, из к-рых по каплям вытекает жидкий металл. В. с использованием капающих электродов, потенциал к-рых меняется медленно и линейно, наз. полярографией (метод предложен Я. Гейровским в 1922). Электродами сравнения служат обычно электроды второго рода, напр. каломельный или хлоросеребряный (см. Электроды сравнения). Кривые зависимости I =f(E) или I =f(U) (вольтамперограммы) регистрируют спец. приборами - полярографами разных конструкций.

Вольтамперограммы, полученные с помощью вращающегося или капающего электрода при монотонном изменении (линейной развертке) напряжения, имеют вид, схематически представленный на рисунке. Участок увеличения тока наз. волной. Волны м. б. анодными, если электроактивное в-во окисляется, или катодными, если оно восстанавливается. Когда в р-ре присутствуют окисленная (Ох) и восстановленная (Red) формы в-ва, достаточно быстро (обратимо) реагирующие на микроэлектроде, на вольтамперограмме наблюдается непрерывная катодно-анодная волна, пересекающая ось абсцисс при потенциале, соответствующем окислит.-восстановит. потенциалу системы Ox/Red в данной среде. Если электрохим. р-ция на микроэлектроде медленная (необратимая), на вольтамперограмме наблюдаются анодная волна окисления восстановленной формы в-ва и катодная волна восстановления окисленной формы (при более отрицат. потенциале). Образование площадки предельного тока на вольтамперограмме связано либо с ограниченной скоростью массопереноса электроактивного в-ва к пов-сти электрода путем конвективной диффузии (предельный диффузионный ток, Id), либо с ограниченной скоростью образования электроактивного в-ва из определяемого компонента в р-ре. Такой ток наз. предельным кинетическим, а его сила пропорциональна концентрации этого компонента.

Форма волны для обратимой электрохим. р-ции описывается ур-нием:
https://www.medpulse.ru/image/encyclopedia/5/1/1/4511.jpeg

где R-газовая постоянная, Т-абс. т-ра, E1/2-потенциал полуволны, т.е. потенциал, соответствующий половине высоты волны (Id/2; см. рис.). Значение E1/2 характерно для данного электроактивного в-ва и используется для его идентификации. Когда электрохим. р-ции предшествует адсорбция определяемого в-ва на пов-сти электрода, на вольтамперограммах наблюдаются не волны, а пики, что связано с экстремальной зависимостью адсорбции от потенциала электрода. На вольтамперограммах, зарегистрированных при линейном изменении (развертке) потенциала со стационарным электродом или на одной капле капающего электрода (устар. - осциллографич. полярограмме), также наблюдаются пики, нисходящая ветвь к-рых определяется обеднением приэлектродного слоя р-ра электроактивным в-вом. Высота пика при этом пропорциональна концентрации электроактивного в-ва. В полярографии предельный диффузионный ток (в мкА), усредненный по времени жизни капли, описывается ур-нием Ильковича:
https://www.medpulse.ru/image/encyclopedia/5/1/2/4512.jpeg

где n-число электронов, участвующих в электрохим. р-ции, С-концентрация электроактивного в-ва (мМ), D-eгo коэф. диффузии (см2/с),https://www.medpulse.ru/image/encyclopedia/5/1/3/4513.jpegвремя жизни ртутной капли (с), m-скорость вытекания ртути (мг/с).
https://www.medpulse.ru/image/encyclopedia/5/1/4/4514.jpeg

Вольтамперограмма, получаемая с помощью вращающегося дискового электрода.

В В. с вращающимся дисковым электродом предельный диффузионный ток рассчитывают по ур-нию:

https://www.medpulse.ru/image/encyclopedia/5/1/5/4515.jpeg

где S-площадь пов-сти электрода (см2),https://www.medpulse.ru/image/encyclopedia/5/1/6/4516.jpeg-круговая частота вращения электрода (рад/с), v-кинематич. вязкость р-ра (см2/с), F-число Фарадея (Кл/моль).

Циклич. В. (В. с относительно быстрой треугольной разверткой потенциала) позволяет изучать кинетику и механизм электродных процессов путем наблюдения на экране осциллографич. трубки с послесвечением одновременно вольтамперограмм с анодной и катодной разверткой потенциала, отражающих, в частности, и электрохим. р-ции продуктов электролиза.

Ниж. граница определяемых концентраций Сн в методах В. с линейной разверткой потенциала составляет 10-5-10-6 М. Для ее снижения до 10-7-10-8 М используют усовершенствованные инструментальные варианты - переменно-токовую и дифференциальную импульсную В.

В первом из этих вариантов на постоянную составляющую напряжения поляризации налагают переменную составляющую небольшой амплитуды синусоидальной, прямоугольной (квадратноволновая В.), трапециевидной или треугольной формы с частотой обычно в интервале 20-225 Гц. Во втором варианте на постоянную составляющую напряжения поляризации налагают импульсы напряжения одинаковой величины (2-100 мВ) длительностью 4-80 мс с частотой, равной частоте капания ртутного капающего электрода, или с частотой 0,3-1,0 Гц при использовании стационарных электродов. В обоих вариантах регистрируют зависимость от U или Е переменной составляющей тока с фазовой или временной селекцией. Вольтамперограммы при этом имеют вид первой производной обычной вольтамперометрич. волны. Высота пика на них пропорциональна концентрации электроактивного в-ва, а потенциал пика служит для идентификации этого в-ва по справочным данным.

Пики разл. электроактивных в-в, как правило, лучше разрешаются, чем соответствующие вольтамперометрич. волны, причем высота пика в случае необратимой электрохим. р-ции в 5-20 раз меньше высоты пика в случае обратимой р-ции, что также обусловливает повыш. разрешающую способность этих вариантов В. Напр., необратимо восстанавливающийся кислород практически не мешает определению мн. электроактивных в-в методом переменно-токовой В. Пики на переменно-токовых вольтамперограммах отражают не только электрохим. р-ции электроактивных в-в, но и процессы адсорбции - десорбции неэлектроактивных в-в на пов-сти электрода (пики нефарадеевского адмиттанса, устар. - тенсамметрич. пики).

Для всех вариантов В. используют способ снижения Сн, основанный на предварительном электрохим., адсорбц. или хим. накоплении определяемого компонента р-ра на пов-сти или в объеме стационарного микроэлектрода, с последующей регистрацией вольтамперограммы, отражающей электрохим. р-цию продукта накопления. Эту разновидность В. наз. инверсионной (устар. название инверсионной В. с накоплением на стационарном ртутном микроэлектроде - амальгамная полярография с накоплением). В инверсионной В. с предварит. накоплением Сн достигает 10-9-10-11 М. Миним. значения Сн получают, используя тонкопленочные ртутные индикаторные электроды, в т.ч. ртутно-графитовые, состоящие из мельчайших капелек ртути, электролитически выделенных на подложку из специально обработанного графита.

Для фазового и элементного анализа твердых тел используют инверсионную В. с электроактивными угольными электродами (т. наз. минерально-угольными пастовыми электродами). Их готовят из смеси угольного порошка, исследуемого порошкообразного в-ва и инертного связующего, напр. вазелинового масла. Разработан вариант этого метода, к-рый дает возможность проводить анализ и определять толщину металлич. покрытий. В этом случае используют спец. устройство (прижимная ячейка), позволяющее регистрировать вольтамперограмму, пользуясь каплей фонового электролита, нанесенного на исследуемую пов-сть.

В. применяют: для количеств. анализа неорг. и орг. в-в в очень широком интервале содержаний - от 10-10 % до десятков %; для исследования кинетики и механизма электродных процессов, включая стадию переноса электрона, предшествующие и последующие хим. р-ции, адсорбцию исходных продуктов и продуктов электрохим. р-ций и т. п.; для изучения строения двойного электрич. слоя, равновесия комплексообразования в р-ре, образования и диссоциации интерметаллич. соединений в ртути и на пов-сти твердых электродов; для выбора условий ампераметрического титрования и др.

Лит.: Гейровский Я., КутаЯ., Основы полярографии, пер. с чеш., М., 1965; Га л юс 3., Теоретические основы электрохимического анализа, пер. с польск., М., 1974; Каплан Б. Я., Импульсная полярография, М., 1978; Брайнина X. 3., Нейман Е. Я., Твердофазные реакции в электроаналитической химии, М., 1982; Каплан Б. Я., Пац Р. Г., Салихджанова Р. М.-Ф., Вольтамперометрия переменного тока, М., 1985. Б. Я. Каплан, О. А. Сангина.


1-винил-2-пирролидон В массе Вагнера реакция Вагнера-меервейна перегруппировки Вазелины Вазопрессин Вакуум Вакуумметры Вакуумформование полимеров Валентность Валентные углы Валентных связей метод Валериановые кислоты Валин Валлаха перегруппировка Вальденовское обращение Вальтерилацетат Вальцевание полимеров Ван слайка метод Ван-дер-ваальса уравнение Ван-дер-ваальсово взаимодействие Ван-дер-ваальсовы кристаллы Ван-дер-ваальсовы радиусы Ванадатометрия Ванадаты Ванадий Ванадийорганические соединения Ванадия галогениды Ванадия оксиды Ванилаль Ванилин Вариантность системы Вариационный метод Велера реакция Верапамил Вербенол и вербеной Вердазильные радикалы Вестерберга реакция Весы Ветиверилацетат Ветиверкетон Ветинон Вещества Вещество Взвешивание Взрыв Взрывоопасность Взрывчатые вещества Вибрационная техника Вильгеродта реакция Вильсмайера реакция Вильямсона синтез Винилазолы Винилацетат Винилацетилен Винилиденфторид Винилиденхлорид Винилиденхлорида сополимеры Виниловые мономеры Виниловые эфиры Виниловый спирт Винилогия Винилпиридиновые каучуки Винилпиридины Винилсульфоновые красители Винилфторид Винилхлорид Винилхлорида сополимеры Винипласт Винные кислоты Вириальное уравнение Вирирование фотографического изображения Висбрекинг Вискоза Вискозиметрия Вискозные волокна Висмут Висмута галогениды Висмута оксиды Висмута сульфиды Висмутолы Висмуторганические соединения Витамин Витамин d Витамин u Витамин в12 Витамин в2 Витамин в3 Витамин в6 Витамин вс Витамин е Витамин к Витамин н Витамин рр Витамин с Витамины Виттига реакция Виц.. Влагомеры и гигрометры Влагопроницаемость Влажность Внедрения реакция Внутреннее вращение молекул Внутренняя энергия Внутрирезонаторная лазерная спектроскопия Вода Водно-угольные суспензии Воднодисперсионные краски Водоподготовка Водоразбавляемые лакокрасочные материалы Водород Водорода пероксид Водородная энергетика Водородный показатель Водородоподобные атомы Водостойкость Водоэмульсионные краски Возбужденные состояния Возгораемость Воздух Воздуха разделение Возмущений теория Волновая функция Волокна природные Волокна химические Волокниты Вольта-потенциал Вольтамперометрия Вольфа перегруппировка Вольфрам Вольфрама галогениды Вольфрама гексафторид Вольфрама карбиды Вольфрама оксиды Вольфрама сплавы Вольфрама сульфиды Вольфраматы Вольфрамовые кислоты Вольфраморганйческие соединения Воля-циглера реакция Воски Воспламенение Воспламенение в пожарном деле Воспламенительные составы Восстановители Восстановительное аминйрование Восстановление Вращательные спектры Вревского законы Всесоюзное химическое общество Вспышки температура Втор.. Второе начало термодинамики Вуда сплав Вудворда реактив Вудворда реакция Вудворда-хофмана правила Вулканизация Вымораживание Выпаривание Вырождение энергетических уровней Высаливание Высокомодульные волокна Высокомолекулярные соединения Высокочастотное титрование Высокоэластическое состояние Высшие жирные кислоты Высшие жирные спирты Выщелачивание Вюрца реакция Вяжущие лекарственные средства Вяжущие материалы Вязкость Вязкотекучее состояние