Словарь научных терминов

Автоматизированные системы научных исследований

АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ НАУЧНЫХ ИССЛЕДОВАНИЙ в химии и химической технологии (АСНИ), системы, в к-рых для повышения эффективности научных исследований ряд процедур получения, анализа, передачи и накопления информации, связанных с использованием в ходе изысканий метода мат. моделирования, формализован и выполняется автоматизированно. Задачи, к-рые можно решать с помощью АСНИ: 1) сократить сроки исследований, 2) повысить точность моделей и получить качественно новую информацию, 3) повысить эффективность использования оборудования, 4) сократить вспомогат. персонал изыскательских групп.

Автоматизация исследований требует прежде всего расчленения изучаемой сложной системы на составные части (уровни строения) с целью установления закономерностей процессов на каждом уровне. На основе знания св-в каждого уровня предсказываются характеристики разл. вариантов еще не существующих (гипотетических) хим. и химико-технол. систем, а глубокое понимание физ.-хим. механизмов явлений позволяет целенаправленно искать наиб. эффективные элементы и структуры разрабатываемых систем. В мировой практике созданы и эксплуатируются сотни АСНИ для изучения на разных уровнях сложных химико-технол. систем.

Обобщенная структура важнейших подсистем при автоматизации хим. и химико-технол. исследований приведена на рисунке. Осн. классы формализуемых процедур для выполнения их автоматически техн. ср-вами АСНИ распределяются по подсистемам след. образом.

1. В автоматизир. подсистеме исследовательских стендов (АСИС): стабилизация режимных параметров процессов в объектах эксперимента (дозирование в-в, стабилизация т-ры, давления и др. параметров в микрореакторах, фрагментах аппаратов или химико-технол. схемах) для уменьшения неконтролируемых возмущений (шумов); программное управление во времени и пространстве режимными параметрами (создание контролируемых изменений независимых переменных объекта эксперимента по заданному плану); логич. управление устройствами для измерения отклика объекта на контролируемые возмущения (автоматич. отбор проб на анализ, переключение режимов работы приборов, перемещение датчиков в объекте и др.); экспресс-анализ результатов измерений отклика объекта на возмущения (первичная обработка данных спектрального типа); экспресс-анализ опытов (оценки материальных и тепловых балансов по всем параметрам, определяющим состояние объекта эксперимента).
https://www.medpulse.ru/image/encyclopedia/8/3/4/834.jpeg

Обобщенная структура автоматизир. системы научных исследований: АСИС, АСМ, АС'ЭИ-автоматизир. системы соотв. исследовательских стендов, моделирования гипотетич. систем и управления эксперим. исследованиями; КМ-константы моделей (оценки); СИ-сигналы измерения; СМ-структуры моделей; СУ-сигналы управления.

2. В подсистеме управления экспериментами (АСУЭ) автоматизируются: качественный и численный анализ априорных мат. моделей для конструирования исследовательских стендов, включая анализ для выбора типа объектов эксперим. изысканий, методик измерения и управления ими; выявление наиб. информационных опытов для данной модели или неск. ее вариантов (планирование экспериментов); определение статистич. оценок констант моделей сравнением вычисленных по модели значений отклика "объекта на контролируемые возмущения с измеренными значениями по заданным критериям оценки (обратные задачи моделирования).

3. В подсистеме моделирования гипотетич. систем (АСМ) автоматизируются: синтез вариантов мат. моделей гипотетич. систем и расчеты отклика моделей (прямые задачи моделирования) на основе априорной информации об элементах синтезируемой системы на первых этапах исследований и скорректированных моделей по эксперим. данным; оптимизация характеристик синтезируемых гипотетич. систем и сравнение их с заданными целями изысканий; анализ оценок гипотетич. систем для уточнения познавательных задач, решаемых в подсистеме эксперим. исследований (АСЭИ), образуемой сочетанием подсистем АСИС и АСУЭ; анализ чувствительности оценок гипотетич. систем к параметрам элементов моделей для определения направления поиска более эффективных элементов. При объединении подсистем АСЭИ и АСМ образуется АСНИ.

Главный принцип создания техн. и программных ср-в АСНИ-модульное построение систем с обеспечением сопряжения пользователем отдельных модулей в систему без спец. дополнит. разработок (стандартизация интерфейсов, создание унифицир. магистралей для подключения цифровых приборов в систему). Важнейшее условие эффективного функционирования АСНИ-обеспечение возможности для исследователя активно контролировать все выполняемые АСНИ процедуры и управлять ими. Для этого создаются системы программ, обеспечивающие исследователям связь АСНИ через дисплеи в режиме диалога на языке в терминах химиков-экспериментаторов без знаний спец. вопросов программирования. В результате комплексной автоматизации ряда процедур в АСНИ сроки исследований сокращаются в 3-5 раз, а точность данных повышается в 2-3 раза. Широкое использование физ. методов измерений позволяет на основе изучения динамики процессов получать в АСНИ качественно новую информацию для более глубокого понимания разл. механизмов процесса и выбора оптимальных инженерных решений.

С целью исследований на молекулярном уровне создаются АСНИ для выявления структуры и расположения атомов в молекулах полученных соединений. В ЭВМ синтезируются модели гипотетич. молекул и на базе кван-товохим. представлений рассчитываются спектры этих молекул. Сравнением вычисленных и измеренных спектров подбираются самые вероятные структуры молекул. Из выбранных структур более точными расчетами и дополнит. исследованиями уточняется пространственное расположение атомов в молекуле.

Для изучения химико-технологических процессов создаются АСНИ, специализированные на задачах анализа кинетики каталитич. хим. р-ций. Элементы исследуемого объекта - реакционноспособные фрагменты молекул и активные центры катализатора; осн. задача-выбор эффективных каталитич. системы и режима работы катализатора. Для решения этой задачи синтезируются варианты гипотетич. маршрутов хим. р-ций, по к-рым в ЭВМ автоматически составляются системы дифференц. ур-ний, представляющих собой мат. модели кинетики р-ций. Число вариантов моделей ограничивается по результатам предварит. экспериментов. На основе анализа входных и выходных расходов и концентраций потоков, т-р и давлений в исследуемых реакторах (в контролируемых условиях тепло- и массообмена внутри реакц. слоя) оцениваются константы скоростей и энергии активации в ур-ниях кинетики. Анализ особенностей кинетич. ур-ний дает возможность планировать последующие эксперименты для сокращения числа гипотез и выбора оптимальных условий использования каталитич. системы. Выявление лимитирующих стадий процесса позволяет найти направление совершенствования катализатора. Принципиальное улучшение исследований данного класса стало возможным на базе изучения кинетики хим. р-ций в динамич. режимах и благодаря слежению физ. методами (ЭПР, диэлькометрия и др.) за состоянием активных центров катализатора в ходе р-ций.

С целью исследований тепло- и массообмена в технол. аппаратах созданы АСНИ для изучения аэро-и гидродинамики потоков. Важнейшая задача-выбор конструктивного оформления аппаратов, обеспечивающего оптимальную организацию потоков в-ва и тепла. Поведение системы прогнозируется на основе решения ур-ний аэро-и гидродинамики (в частных производных). На отдельных этапах исследований используются модельные идеализиров. представления гидродинамики (модели идеального вытеснения и смешения, многофазные циркуляционные модели), для к-рых из эксперимента определяются статистич. оценки коэф. диффузии, межфазного обмена и др. Принципиальное улучшение исследований достигнуто в результате одновременного измерения локальных характеристик потоков (полей скоростей, давлений, концентраций специально вводимых в-в).

Для решения задач на уровне отдельных видов оборудования созданы АСНИ, в к-рых элементы системы представлены в виде мат. моделей элементов того или иного аппарата (слой катализатора, теплообменник, распределит, устройство и др.). Одна из главных задач -изучение и прогнозирование поведения катализаторов в пром. условиях. В таких АСНИ общий объем экспериментов значительно сокращается за счет поиска оптимальных решений на моделях гипотетич. аппаратов, а стоимость опытных установок-в результате уменьшения масштабов изучаемых фрагментов аппаратуры; при этом используются данные из АСНИ аэро- и гидродинамики и АСНИ кинетики хим. р-ций.

На уровне исследования химико-технол. схем элементами изучаемой системы служат аппараты (реакторы, абсорберы и др.), связанные потоками в-ва и энергии в единый комплекс. Главная задача - обнаружение коллективных эффектов, возникающих в химико-технол. системе и не проявляющихся при раздельном анализе ее элементов. К таким эффектам относится, напр., накопление в циркуляционных контурах микропримесей, отравляющих катализатор или вызывающих полимеризацию полупродуктов с осаждением в-в на конструктивных элементах аппаратов и др. Повышение чувствительности и применение наиб. универсальных аналит. приборов (напр., хромато-масс-спектрометров) позволяет обнаруживать в АСНИ коллективные эффекты в исследоват. стендах лаб. масштабов и существенно сокращать затраты ср-в и времени на стр-во эксперим. установок. Одновременно применение в АСНИ на уровне химико-технол. схем мат. моделей аппаратов, полученных в АСНИ др. уровней, дает возможность сокращать время на опыты за счет изучения и выбора на моделях оптимальных режимов и экспериментов до начала опытных работ и оперативной коррекции хода исследований.

Дальнейшее развитие АСНИ в химии и хим. технологии связано с организацией отдельных систем в единую иерар-хич. отраслевую систему, к-рая позволила бы специалистам разл. профиля оперативно обмениваться информацией (коллективный интеллект) для макс. сокращения затрат ср-в и времени на реализацию в пром-сти результатов научных исследований.

Лит.: Египко В. М., Организация и проектирование систем автоматизации научно-технических экспериментов, К., 1978; Аронина С. Е., Штраль И. Я., Автоматизация химико-технологических исследований, М., 1979; Тимошенко В. И. [и др.], "Хим. пром-сть", 1979, №3, с. 44(172)-48(176); Химическая промышленность. Сер. Автоматизация химических производств, 1980, в. 1; Френкель Б. А., Автоматизация экспериментальных установок, М., 1980; Эляшберг М. Е., Грибов Л. А., Серов В. В., Молекулярный спектральный анализ и ЭВМ, М., 1980; Автоматизация исследований состава, структуры и свойств веществ на основе ЭВМ. Обзорная информация, в. 4, М., 1981. М.Г. Слипъко, Ю.М. Лужков, И. Я. Штраль.


(+ )-абсцизовая кислота 2,2 -азо-бис-изобутиронитрил 2-амино-2-метил-1-пропанол 2-амино-2-этил-1,3-пропандиол S-аденозилметионин Абляционныематериалы Абрамова реакция Абс-пластик Абсорбция Авиакеросин Авиважныесредства Авироль Авогадро закон Автокатализ Автокосметика Автолы Автоматизированное управление Автоматизированные системы научных исследований Автоокисление Агар Агрохимия Адамантан Адамкевича реакция Адамсит Адгезия Аддукт Аденилатциклаза Аденин Аденозин Аденозинмонофосфат циклический Аденозинтрифосфатазы Аденозинфосфорные кислоты Адиабатического сжатия метод Адиабатическое приближение Адипиновая кислота Адиподинитрил Адреналин Адреноблокирующие средства Адренокортикотропин Адреномиметические средства Адсорбционная очистка Адсорбция Азаиндолы Азатиоприн Азелаиновая кислота Азеотропные смеси Азепин Азетидин Азиды арилсульфокислот Азиды металлов Азиды органические Азиновые красители Азины Азиридин Азирины Азобензол Азогены Азокрасители Азоксисоединения Азолы Азометиновые красители Азометиновые соединения Азосоединения Азосочетание Азот Азота оксиды Азота фториды Азотистая кислота Азотистоводородная кислота Азотистые иприты Азотная кислота Азотные удобрения Азотолы Азотолы-ариламиды з-гидрокси-2-нафтойной кислоты Азотфиксация Азулены Аймалин Айнхорна реакция Акарициды Аквакомплексы Акваметрия Акватол Аккумуляторы Аконитин Акридин Акридиновые красители Акриламид Акрилатные каучуки Акрилаты Акриловая кислота Акриловые лаки Акрилонитрил Акрихин Акролеин Аксиальное и экваториальное положения Активационный анализ Активированного комплекса теория Активность Активные красители Активный уголь Актин Актиний Актиноиды Актинометрия Актиномицины Акустическая спектроскопия Акустические материалы Аланин Ализарин Ализариновое масло Ализариновый красный с Алифатические соединения Алициклические соединения Алкалиметрия Алкалоиды Алкалоиды дафнифиллума Алкалоиды ипекакуаны Алкалоиды ликоподиума Алкалоиды элаокарпуса Алкансульфонаты Алканфосфонаты Алканы Алкенилирование Алкены Алкидные смолы Алкилсульфаты Алкилтиурамсульфиды Алкилфенолы Алкилфосфаты Алкилфосфолипиды Алкины Алкоголиз Алкогольдегидрогеназа Алкоголяты Алкоксигруппа Алкоксисиланы и ароксисиланы Аллена реакция Аллены Аллиламины Аллилбензол Аллилбораны Аллилглицидиловый эфир Аллилизотиоцианат Аллилмеркаптан Аллиловый спирт Аллилхлорид Аллилцианид Аллильная перегруппировка Аллильное замещение Аллильные комплексы переходных металлов Аллильные соединения Аллооцимен Алмаз Алхимия Альгиновые кислоты Альгициды Альдегидаммиаки Альдегиддегидрогеназы Альдегидо- и кетокислоты Альдегиды Альдера правила Альдимины и кетимины Альдолазы Альдольная конденсация Альтернантные сополимеры Альтернантные углеводороды Альтернативные топлива Алюминаты Алюминий Алюминийорганические соединения Алюминия гидроксид Алюминия нитрат Алюминия нитрид Алюминия оксид Алюминия сплавы Алюминия сульфат Алюминия фосфаты Алюминия фторид Алюминия хлорид Алюмогидриды Алюмосиликаты Алюмотол Амадори перегруппировка Амальгамы Амариллисовые алкалоиды Амбидентные соединения Амбра Амений-катионы Америций Амидины Амиды карбоновых кислот Амилазы Амиламины Амилены Амиловые спирты Аминирование Аминоалкилакрилаты Аминоалкилирование Аминоальдегиды и аминокетоны Аминоантрахинонсульфокислоты Аминоантрахиноны Аминоацил-трнк-синтетазы Аминобензойные кислоты h2nc6h4cooh Аминобензолсульфокислоты Аминов Аминогалогенантрахиноны Аминогликозидные антибиотики Аминодифениламины Аминокапроновая кислота Аминокислоты Аминолиз Аминометилирование Аминонафтолсульфокислоты Аминонафтолы Аминонитрилы Аминонитроанизолы Аминооксиантрахиноны Аминопептидазы Аминопиридины Аминопласты Аминосалициловые кислоты Аминосахара Аминоспирты Аминотолуолсульфокислоты Аминофенолы Аминоэтилэтаноламин Амины Амины третичные перфторированные Амиодарон Амитриптилин Аммиак Аммиакаты Аммиачная вода Аммины Аммоналы Аммониевые соединения Аммоний-катионы Аммониты Аммония гексафторосиликат Аммония карбонат Аммония нитрат Аммония пероксодисульфат Аммония перхлорат Аммония сульфат Аммония тиоцианат Аммония фосфаты Аммония фторид Аммония хлорид Аммонолиз Аммофос Амортизаторные жидкости Аморфное состояние Амперометрическое титрование Амфотерность Амфотерные ионообменные смолы Анабазин Анаболические вещества Аналептические средства Аналитическая химия Анальгетические средства Анаприлин Ангелицин Ангидриды карбоновых кислот Ангидриды неорганических кислот Ангидрон Анетол Анзамицины Анзерин Анид Анизидины Анизол Анизотропия Анилиды Анилин Анилино-формальдегидные смолы Анилиновая точка Анилиновый чёрный Анионная полимеризация Анионообменные смолы Анионы Анисовый альдегид Аннелирование Аннулены Анодная защита Анодное оксидирование Анодное растворение Анри реакции Анса-соединения Анти..., син.. Антиалкогольные средства Антиаллергические средства Антиаритмические средства Антигеморрагические средства Антидетонаторы моторных топлив Антидиабетические средства Антидоты Антидоты для растений Антикоррозионные материалы Антимонаты Антимониды Антинакипины Антиозонанты Антиоксиданты Антипирены Антипирин Антиподы оптические Антирады Антисептические средства Антистатики Антитиреоидные средства Антиферментные средства Антиферромагнетики Антифиданты Антифризы Антифрикционные материалы Антифрикционные смазки Антихолинэстеразные средства Античастицы Антоцианы Антраниловая кислота Антрахинон Антрахинонкарбоновые кислоты Антрахиноновые красители Антрахинонсульфокислоты Антрацен Антрациклины Антрацит Антрон Анхимерное содействие Апатит Апикальное положение Апоморфин Аппретирующие средства Арахидоновая кислота Арбитражный анализ Арборициды Арбузова реакция Аргентометрия Аргинин Аргон Ареноний-катионы Арены Арил Арилирование Арилметановые красители Арилсульфатазы Арилсульфотрансфераза Арины Армированные пластики Арндта-айстерта реакция Ароксильные радикалы Ароматизация Ароматические соединения Ароматичность Аррениуса уравнение Арсеназо Арсенаты Арсениды Арсин Арсингалогениды Арсоний-катионы Асбопластики Асидол Асимметрический атом Асимметрический синтез Аскаридол Аспарагин Аспарагиназы Аспарагиновая кислота Аспартам Аспартат-карбамоилтрансфераза Аспартатаминотрансфераза Аспергилловая кислота Астат Асфальт Асфальтены Атмосфера Атмосферная коррозия Атмосферно-вакуумные установки Атмосферостойкость Атом Атомная единица массы Атомная масса Атомно-абсорбционный анализ Атомно-флуоресцентный анализ Атомные радиусы Атомные спектры Атропоизомерия Аттрактанты Ауверса-скиты правило Ауксины Афелий Аффинная хроматография Аценафтен Аценафтенхинон Аценафтилен Ацетали амидов карбоновых кислот Ацетали и кетали Ацетальдегид Ацетамид Ацетанилид Ацетатные волокна Ацетаты Ацетил-соа-синтетаза Ацетила пероксид Ацетилацетон Ацетилен Ацетилендикарбоновая кислота Ацетиленовые комплексы переходных металлов Ацетиленовые углеводороды Ацетилсалицйловая кислота Ацетилхлорид Ацетилхолин Ацетилхолинэстераза Ацетон Ацетонитрил Ацетонорастворимые красители Ацетонциангидрин Ацетоуксусный эфир Ацетофенон Ацефен Аци-нитросоединения Ацидиметрия Ацидокомплексы Ацидолиз Ациклические соединения Ацилирование Ацилоиновая конденсация Ацилоины Ацильное число Аэрозоли Аэросил