Словарь научных терминов

Ароматичность

АРОМАТИЧНОСТЬ (от греч. aroma, род. падеж aromatos - благовоние), понятие, характеризующее совокупность структурных, энергетич. св-в и особенностей реакц. способности циклич. структур с системой сопряженных связей. Термин введен Ф. А. Кекуле (1865) для описания св-в соединений, структурно близких к бензолу - родоначальнику класса ароматических соединении.

К числу наиб. важных признаков А. принадлежит склонность ароматич. соед. к замещению, сохраняющему систему сопряженных связей в цикле, а не к присоединению, разрушающему эту систему. Кроме бензола и его производных, такие р-ции характерны для полицикли ч. ароматич. углеводородов (напр., нафталина, антрацена, фенантрена и их производных), а также для изоэлектронных им сопряженных гетероциклич. соединений. Известно, однако, немало соед. (азулен, фульвен и др.), к-рые также легко вступают в р-ции замещения, но не обладают всеми др. признаками А.

Реакц. способность не может служить точной характеристикой А. еще и потому, что она отражает св-ва не только осн. состояния данного соединения, но и переходного состояния (активиров. комплекса) р-ции, в к-рую это соед. вступает. Поэтому более строгие критерии А. связаны с анализом физ. св-в осн. электронных состояний циклич. сопряженных структур. Главная трудность состоит в том, что А. не является экспериментально определяемой характеристикой. Поэтому не существует однозначного критерия для установления степени А., т.е. степени подобия св-вам бензола. Ниже рассмотрены наиб. важные признаки А.

Строение электронной оболочки ароматических систем.

Тенденция бензола и его производных к сохранению структуры сопряженного кольца в разл. превращениях означает повыш. термодинамич. и кинетич. устойчивость этого структурного фрагмента. Стабилизация (понижение электронной энергии) молекулы или иона, обладающих циклич. структурой, достигается при полном заполнении электронами всех связывающих молекулярныхhttps://www.medpulse.ru/image/encyclopedia/4/9/3/2493.jpegорбиталей и вакантности несвязывающих и антисвязывающих орбиталей. Выполнение этих условий достигается, когда общее числоhttps://www.medpulse.ru/image/encyclopedia/4/9/4/2494.jpeg электронов в циклич. полиене равно (4л + 2), где п = = 0,1,2... (правило Хюккеля).

Это правило объясняет устойчивость бензола (ф-ла I) и циклопентадиенильного аниона (II; п = 1). Оно позволило правильно предсказать устойчивость циклопропенильного (III; п = 0) и циклогептатриенильного (IV; п = 1) катионов. Ввиду подобияhttps://www.medpulse.ru/image/encyclopedia/4/9/5/2495.jpegэлектронных оболочек соед. II-IV и бензола они, как и высшие циклич. полиены - [10], [14], [18]аннулены (V-VII), рассматриваются как ароматич. системы.
https://www.medpulse.ru/image/encyclopedia/4/9/6/2496.jpeg

Правило Хюккеля можно экстраполировать на ряд сопряженных гетероциклич. соед. - производные пиридина (VIII) и катиона пирилия (IX), изоэлектронные бензолу, пятичленные гетероциклы типа X (пиррол, фуран, тиофен), изоэлектронные циклопентадиенильному аниону. Эти соединения также относят к ароматич. системам.
https://www.medpulse.ru/image/encyclopedia/4/9/7/2497.jpeg

Для производных соединений II-Х и др. более сложных структур, получаемых изоэлектронным замещением метиновых групп в полиенах I-VII, также характерны высокая термодинамич. устойчивость и общая склонность к р-циям замещения в ядре.

Циклич. сопряженные полиены, имеющие в цикле 4nhttps://www.medpulse.ru/image/encyclopedia/4/9/8/2498.jpeg электронов (n=1,2...), неустойчивы и легко вступают в р-ции присоединения, т. к. обладают незамкнутой электронной оболочкой с частично заполненными несвязывающими орбиталями. Такие соединения, наиб. типичным примером к-рых служит циклобутадиен (XI), относят кантиароматич. системам.

Правила, учитывающие числоhttps://www.medpulse.ru/image/encyclopedia/4/9/9/2499.jpegэлектронов в цикле, полезны для характеристики св-в моноциклич. структур, однако неприложимы к полициклам. При оценке А. последних необходимо учитывать, как соответствуют этим правиламhttps://www.medpulse.ru/image/encyclopedia/5/0/0/2500.jpeg электронные оболочки каждого отдельного цикла молекулы. С осторожностью следует пользоваться ими и в случае многозаряженных циклич. ионов. Так, электронные оболочки дикатиона и дианиона циклобутадиена отвечают требованиям правила Хюккеля. Однако эти структуры нельзя относить к ароматическим, т. к. дикатион (п = 0) устойчив не в плоской форме, обеспечивающей циклич. сопряжение, а в согнутой по диагонали; дианион (n=1) вообще неустойчив.

Энергетические критерии ароматичности. Энергия резонанса. Для определения количеств. меры А., характеризующей повыш. термодинамич. устойчивость ароматич. соед., было сформулировано понятие энергии резонанса (ЭР), или энергии делокализации.

Теплота гидрирования молекулы бензола, формально содержащей три двойные связи, на 151 кДж/моль больше, чем теплота гидрирования трех молекул этилена. Эту величину, связываемую с ЭР, можно рассматривать как энергию, дополнительно затрачиваемую на разрушение циклич. системы сопряженных двойных связей бензольного кольца, стабилизирующей эту структуру. Т. обр., ЭР характеризует вклад циклич. сопряжения в теплоту образования (полную энергию, теплоту атомизации) соединения.

Предложен ряд способов теоретич. оценок ЭР. Они различаются гл. обр. выбором структуры сравнения (т.е. структуры, в к-рой нарушено циклич. сопряжение) с циклич. формой. Обычный подход к вычислению ЭР состоит в сопоставленииhttps://www.medpulse.ru/image/encyclopedia/5/0/1/2501.jpegэлектронных энергийhttps://www.medpulse.ru/image/encyclopedia/5/0/2/2502.jpegциклич. структуры и суммы энергий всех изолированных кратных связей, содержащихся в ней. Однако рассчитываемые т. обр. ЭР, независимо от используемого квантовохим. метода, имеют тенденцию к возрастанию с увеличением размеровhttps://www.medpulse.ru/image/encyclopedia/5/0/3/2503.jpegсистемы. Это нередко противоречит эксперим. данным о св-вах ароматич. системы. Так, А. в ряду полиаценовбензол (I), нафталин (XII), антрацен (XIII), тетрацен (XIV) понижается (напр., возрастает склонность к присоединению, увеличивается альтернирование длин связей), а ЭР (приведены в единицахhttps://www.medpulse.ru/image/encyclopedia/5/0/4/2504.jpeg= 75 кДж/моль) растут:
https://www.medpulse.ru/image/encyclopedia/5/0/5/2505.jpeg

Этого недостатка лишены величины ЭР, рассчитываемые путем сравненияhttps://www.medpulse.ru/image/encyclopedia/5/0/6/2506.jpegэлектронных энергий циклич. структуры и аналогичного ациклич. сопряженного полнена (М. Дьюар, 1969). Рассчитанные т. обр. величины принято называть ЭР Дьюара (ЭРД). Напр., ЭРД бензола (1,013) вычисляется при сопоставлении егоhttps://www.medpulse.ru/image/encyclopedia/5/0/7/2507.jpeg сhttps://www.medpulse.ru/image/encyclopedia/5/0/8/2508.jpeg 1,3,5-гексатриена, а ЭРД циклобутадиенаhttps://www.medpulse.ru/image/encyclopedia/5/0/9/2509.jpeg-сопоставлением егоhttps://www.medpulse.ru/image/encyclopedia/5/1/0/2510.jpeg= =https://www.medpulse.ru/image/encyclopedia/5/1/1/2511.jpeg сhttps://www.medpulse.ru/image/encyclopedia/5/1/2/2512.jpeg 1,3-бутадиена.

Соединения с положит. значениями ЭРД относят к ароматическим, с отрицательными-к антиароматическим, а со значениями ЭРД, близкими к нулю, - к неароматическим. Хотя значения ЭРД варьируют в зависимости от приближений квантовохим. метода расчета, относит. порядок их практически не зависит от выбора метода. Ниже приведены ЭРД в расчете на одинhttps://www.medpulse.ru/image/encyclopedia/5/1/3/2513.jpegэлектрон (ЭРД/е; в единицахhttps://www.medpulse.ru/image/encyclopedia/5/1/4/2514.jpeg), вычисленные по модифициров. методу молекулярных орбиталей Хюккеля:
https://www.medpulse.ru/image/encyclopedia/5/1/5/2515.jpeg

Наиб. ЭРД/е, то есть наиб. А., обладает бензол. Понижение ЭРД/е отражает понижение ароматич. св-в. Приведенные данные хорошо согласуются со сложившимися представлениями о проявлениях А.

Магнитные критерии ароматичности. Циклич. сопряжениеhttps://www.medpulse.ru/image/encyclopedia/5/1/6/2516.jpeg электронов приводит к возникновению в молекуле кольцевого тока, к-рый вызывает экзальтацию диамагн. восприимчивости. Поскольку величины кольцевого тока и экзальтации отражают эффективность циклич. сопряжения, они м. б. использованы как количеств. мера А.

К ароматическим относятся соед., в молекулах к-рых поддерживаются наведенные диамагнитныеhttps://www.medpulse.ru/image/encyclopedia/5/1/7/2517.jpegэлектронные кольцевые токи (диатропные системы). В случае [4/1 + 2]аннуленов (n = 0,1,2...) существует прямая пропорциональность между силой кольцевого тока и величиной ЭРД. Однако для неальтернантных углеводородов (напр., азулена) и гетероциклич. соед. эта зависимость усложняется. В ряде случаев система м.б. одновременно и диатропной и антиароматической, напр. бицикло[6,2,0]декапентаен.

Наличие индуциров. кольцевого тока в циклич. сопряженных системах характерно проявляется в спектрах протонного магн. резонанса (ПМР), т.к. ток создает анизотропное магн. поле, заметно влияющее на хим. сдвиги протонов, связанных с атомами кольца. Сигналы протонов, расположенных во внутр. части ароматич. кольца, смещаются в сторону сильного поля, а сигналы протонов, расположенных на периферии кольца, - в сторону слабого поля. Так, внутр. протоны [14]аннулена (ф-ла VI) и [18]аннулена (VII) проявляются при — 60°С в спектре ПМР соотв. при 0,0 и —2,99м. д., а внешние-при 7,6 и 9,28 м. д.

Для антиароматич. систем [4n]аннуленов, наоборот, характерны парамагн. кольцевые токи, приводящие к сдвигу внеш. протонов в сильное поле (паратропные системы). Так, хим. сдвиг внеш. протонов [16]аннулена равен всего 4,8 м.д.

Структурные критерии ароматичности. Важнейшие структурные характеристики молекулы бензола - ее планарность и полная выравненность связей. Молекулу можно рассматривать как ароматическую, если длины углерод-углеродных связей в ней лежат в пределах 0,136-0,143 нм, т.е. близко к 0,1397 нм для молекулы бензола (I). Для нециклич. сопряженных полиеновых структур длины связей С—С составляют 0,144-0,148 нм, а связей С=С-0,134-0,135 нм. Еще большее альтернирование длин связей характерно для антиароматич. структур. Это подтверждается данными строгих неэмпирич. расчетов геометрич. параметров циклобутадиена и эксперим. данными для его производных.

Предложены разл. выражения для количеств. характеристики А. по степени альтернирования длин связей, напр. для углеводородов вводится индекс А. (НОМАd):
https://www.medpulse.ru/image/encyclopedia/5/1/8/2518.jpeg

где а = 98,89, Хr- длина r-ной связи (в А), n-число связей. Для бензола HOMAd максимален и равен 1, для циклобутадиена минимален (0,863). Азулен с НОМАd = 0,921 занимает промежут. положение, характерное для неароматич. систем.

Развитие концепции ароматичности. Главная характеристика - энергетич. стабилизация структуры при молекулярной геометрии, создающей оптимальные условия для соответствующих электронных взаимодействий. Установление аналогичных связей между пространственным и электронным строением молекул др. структурных типов привело к расширению понятия А.

Повыш. устойчивость гомосопряженных систем (относительно др. изомерных форм), в к-рых числоhttps://www.medpulse.ru/image/encyclopedia/5/1/9/2519.jpegэлектронов равно (4n + 2), привела к выработке понятия гомоароматичности. Представителями гомоароматич. систем служат, напр., 1,3,5-циклогептатриен (гомобензол; XV) и трис-гомоциклопропенильный катион (XVI).
https://www.medpulse.ru/image/encyclopedia/5/2/0/2520.jpeg

К спироароматич. системам принадлежат ненасыщ. спирановые структуры, в к-рых перекрывание двух ортогональных системhttps://www.medpulse.ru/image/encyclopedia/5/2/1/2521.jpegорбиталей приводит к стабилизирующему эффекту. Последний достигается, когда числоhttps://www.medpulse.ru/image/encyclopedia/5/2/2/2522.jpeg электронов в обоих циклах равно (4п + 2), напр. в [4,2]спирарене (XVII).

Понятие А. привлекается даже для характеристики энергетически устойчивых нециклич. структур [напр., дианиона триметилена и его изоэлектронного аналога гуанидина (ХУШ)]-Y-ароматичность; для насыщ. циклов [напр., циклоалканов с нечетным числом метиленовых звеньев, как циклопропан (XIX)] - сигма-ароматичность; трехмерных каркасных структур - трехмерная ароматичность.
https://www.medpulse.ru/image/encyclopedia/5/2/3/2523.jpeg

Примеры структур с трехмерной А.-углеводородные катионы (СН)5+ (ф-ла XX), (СН)62+ (XXIX производные к-рых известны, нидо- и клозокарбораны (XXII и ХХIII),https://www.medpulse.ru/image/encyclopedia/5/2/4/2524.jpegкомплексы типа железа карбонилов и др. (см. Карбонилы металлов), сэндвичевые структуры типа ферроцена, металлоорг. кластеры-производные переходных металлов. Во всех этих структурах реализуется замкнутая оболочка валентных электронов, заполняющих только связывающие молекулярные орбитали. Для разл. типов каркасных структур, напр. пирамидальных, сэндвичевых, бипирамидальных, разработаны специфич. правила электронного счета, определяющие их устойчивость, т.е. ароматичность.
https://www.medpulse.ru/image/encyclopedia/5/2/5/2525.jpeg

Понятие А. успешно привлекается для описания энергетич. характеристик переходных состояний термич. перициклич. р-ций. Такие р-ции осуществляются через переходные состояния, к-рые в зависимости от конформации цикла содержат 4n+2 (хюккелевские системы) или 4n (мебиусовские системы)https://www.medpulse.ru/image/encyclopedia/5/2/6/2526.jpegэлектронов.

Лит.: ГерретП.Дж., в кн.: Общая органическая химия, пер. с англ., т. 1, М., 1981, с. 281-314; Глуховцев М. Н. [и др.], "Успехи химии", 1985, т. 54, № 1, с. 86-125; Lewis D., Peters D., Facts and theories of aromaticity, L.-Basingstoke, 1975; Dewar M.J.S., McKee M.L, "Pure Appl Chem.", 1980, v. 52, №6, p. 1431-41; MinkinV.L, MinyaevR.M., в кн.: Progress in theoretical organic chemistry, v. 3, Amst.-[a.o.], 1982, p. 121-55. В.И. Минкин.


(+ )-абсцизовая кислота 2,2 -азо-бис-изобутиронитрил 2-амино-2-метил-1-пропанол 2-амино-2-этил-1,3-пропандиол S-аденозилметионин Абляционныематериалы Абрамова реакция Абс-пластик Абсорбция Авиакеросин Авиважныесредства Авироль Авогадро закон Автокатализ Автокосметика Автолы Автоматизированное управление Автоматизированные системы научных исследований Автоокисление Агар Агрохимия Адамантан Адамкевича реакция Адамсит Адгезия Аддукт Аденилатциклаза Аденин Аденозин Аденозинмонофосфат циклический Аденозинтрифосфатазы Аденозинфосфорные кислоты Адиабатического сжатия метод Адиабатическое приближение Адипиновая кислота Адиподинитрил Адреналин Адреноблокирующие средства Адренокортикотропин Адреномиметические средства Адсорбционная очистка Адсорбция Азаиндолы Азатиоприн Азелаиновая кислота Азеотропные смеси Азепин Азетидин Азиды арилсульфокислот Азиды металлов Азиды органические Азиновые красители Азины Азиридин Азирины Азобензол Азогены Азокрасители Азоксисоединения Азолы Азометиновые красители Азометиновые соединения Азосоединения Азосочетание Азот Азота оксиды Азота фториды Азотистая кислота Азотистоводородная кислота Азотистые иприты Азотная кислота Азотные удобрения Азотолы Азотолы-ариламиды з-гидрокси-2-нафтойной кислоты Азотфиксация Азулены Аймалин Айнхорна реакция Акарициды Аквакомплексы Акваметрия Акватол Аккумуляторы Аконитин Акридин Акридиновые красители Акриламид Акрилатные каучуки Акрилаты Акриловая кислота Акриловые лаки Акрилонитрил Акрихин Акролеин Аксиальное и экваториальное положения Активационный анализ Активированного комплекса теория Активность Активные красители Активный уголь Актин Актиний Актиноиды Актинометрия Актиномицины Акустическая спектроскопия Акустические материалы Аланин Ализарин Ализариновое масло Ализариновый красный с Алифатические соединения Алициклические соединения Алкалиметрия Алкалоиды Алкалоиды дафнифиллума Алкалоиды ипекакуаны Алкалоиды ликоподиума Алкалоиды элаокарпуса Алкансульфонаты Алканфосфонаты Алканы Алкенилирование Алкены Алкидные смолы Алкилсульфаты Алкилтиурамсульфиды Алкилфенолы Алкилфосфаты Алкилфосфолипиды Алкины Алкоголиз Алкогольдегидрогеназа Алкоголяты Алкоксигруппа Алкоксисиланы и ароксисиланы Аллена реакция Аллены Аллиламины Аллилбензол Аллилбораны Аллилглицидиловый эфир Аллилизотиоцианат Аллилмеркаптан Аллиловый спирт Аллилхлорид Аллилцианид Аллильная перегруппировка Аллильное замещение Аллильные комплексы переходных металлов Аллильные соединения Аллооцимен Алмаз Алхимия Альгиновые кислоты Альгициды Альдегидаммиаки Альдегиддегидрогеназы Альдегидо- и кетокислоты Альдегиды Альдера правила Альдимины и кетимины Альдолазы Альдольная конденсация Альтернантные сополимеры Альтернантные углеводороды Альтернативные топлива Алюминаты Алюминий Алюминийорганические соединения Алюминия гидроксид Алюминия нитрат Алюминия нитрид Алюминия оксид Алюминия сплавы Алюминия сульфат Алюминия фосфаты Алюминия фторид Алюминия хлорид Алюмогидриды Алюмосиликаты Алюмотол Амадори перегруппировка Амальгамы Амариллисовые алкалоиды Амбидентные соединения Амбра Амений-катионы Америций Амидины Амиды карбоновых кислот Амилазы Амиламины Амилены Амиловые спирты Аминирование Аминоалкилакрилаты Аминоалкилирование Аминоальдегиды и аминокетоны Аминоантрахинонсульфокислоты Аминоантрахиноны Аминоацил-трнк-синтетазы Аминобензойные кислоты h2nc6h4cooh Аминобензолсульфокислоты Аминов Аминогалогенантрахиноны Аминогликозидные антибиотики Аминодифениламины Аминокапроновая кислота Аминокислоты Аминолиз Аминометилирование Аминонафтолсульфокислоты Аминонафтолы Аминонитрилы Аминонитроанизолы Аминооксиантрахиноны Аминопептидазы Аминопиридины Аминопласты Аминосалициловые кислоты Аминосахара Аминоспирты Аминотолуолсульфокислоты Аминофенолы Аминоэтилэтаноламин Амины Амины третичные перфторированные Амиодарон Амитриптилин Аммиак Аммиакаты Аммиачная вода Аммины Аммоналы Аммониевые соединения Аммоний-катионы Аммониты Аммония гексафторосиликат Аммония карбонат Аммония нитрат Аммония пероксодисульфат Аммония перхлорат Аммония сульфат Аммония тиоцианат Аммония фосфаты Аммония фторид Аммония хлорид Аммонолиз Аммофос Амортизаторные жидкости Аморфное состояние Амперометрическое титрование Амфотерность Амфотерные ионообменные смолы Анабазин Анаболические вещества Аналептические средства Аналитическая химия Анальгетические средства Анаприлин Ангелицин Ангидриды карбоновых кислот Ангидриды неорганических кислот Ангидрон Анетол Анзамицины Анзерин Анид Анизидины Анизол Анизотропия Анилиды Анилин Анилино-формальдегидные смолы Анилиновая точка Анилиновый чёрный Анионная полимеризация Анионообменные смолы Анионы Анисовый альдегид Аннелирование Аннулены Анодная защита Анодное оксидирование Анодное растворение Анри реакции Анса-соединения Анти..., син.. Антиалкогольные средства Антиаллергические средства Антиаритмические средства Антигеморрагические средства Антидетонаторы моторных топлив Антидиабетические средства Антидоты Антидоты для растений Антикоррозионные материалы Антимонаты Антимониды Антинакипины Антиозонанты Антиоксиданты Антипирены Антипирин Антиподы оптические Антирады Антисептические средства Антистатики Антитиреоидные средства Антиферментные средства Антиферромагнетики Антифиданты Антифризы Антифрикционные материалы Антифрикционные смазки Антихолинэстеразные средства Античастицы Антоцианы Антраниловая кислота Антрахинон Антрахинонкарбоновые кислоты Антрахиноновые красители Антрахинонсульфокислоты Антрацен Антрациклины Антрацит Антрон Анхимерное содействие Апатит Апикальное положение Апоморфин Аппретирующие средства Арахидоновая кислота Арбитражный анализ Арборициды Арбузова реакция Аргентометрия Аргинин Аргон Ареноний-катионы Арены Арил Арилирование Арилметановые красители Арилсульфатазы Арилсульфотрансфераза Арины Армированные пластики Арндта-айстерта реакция Ароксильные радикалы Ароматизация Ароматические соединения Ароматичность Аррениуса уравнение Арсеназо Арсенаты Арсениды Арсин Арсингалогениды Арсоний-катионы Асбопластики Асидол Асимметрический атом Асимметрический синтез Аскаридол Аспарагин Аспарагиназы Аспарагиновая кислота Аспартам Аспартат-карбамоилтрансфераза Аспартатаминотрансфераза Аспергилловая кислота Астат Асфальт Асфальтены Атмосфера Атмосферная коррозия Атмосферно-вакуумные установки Атмосферостойкость Атом Атомная единица массы Атомная масса Атомно-абсорбционный анализ Атомно-флуоресцентный анализ Атомные радиусы Атомные спектры Атропоизомерия Аттрактанты Ауверса-скиты правило Ауксины Афелий Аффинная хроматография Аценафтен Аценафтенхинон Аценафтилен Ацетали амидов карбоновых кислот Ацетали и кетали Ацетальдегид Ацетамид Ацетанилид Ацетатные волокна Ацетаты Ацетил-соа-синтетаза Ацетила пероксид Ацетилацетон Ацетилен Ацетилендикарбоновая кислота Ацетиленовые комплексы переходных металлов Ацетиленовые углеводороды Ацетилсалицйловая кислота Ацетилхлорид Ацетилхолин Ацетилхолинэстераза Ацетон Ацетонитрил Ацетонорастворимые красители Ацетонциангидрин Ацетоуксусный эфир Ацетофенон Ацефен Аци-нитросоединения Ацидиметрия Ацидокомплексы Ацидолиз Ациклические соединения Ацилирование Ацилоиновая конденсация Ацилоины Ацильное число Аэрозоли Аэросил