Словарь научных терминов

Многофотонные процессы

МНОГОФОТОННЫЕ ПРОЦЕССЫ, фотофиз. и фотохим. процессы, происходящие в результате поглощения атомом или молекулой двух и более (до неск. десятков) фотонов. Вероятность М.п. пренебрежимо мала при интенсивности света обычных источников, но при использовании лазерного излучения становится сравнимой с вероятностью обычного (однофотонного) поглощения. При М. п. атом или молекула возбуждается из осн. состояния в высоколежащие квантовые состояния дискретного или непрерывного спектра, в результате чего возможны фотоионизация, фотодиссоциация, фотоизомеризация и т. п. превращения.

М.п. классифицируют по типу возбуждения. Атом (молекула) может резонансно поглотить одновременно п фотонов, если их суммарная энергия равна разности энергий начального (E0) и конечного (Eк)состояний (рис. 1,a). Вероятность такого поглощения пропорциональна интенсивности света в n-й степени. Процесс легко реализуется при облучении лазерными импульсами для п = 2 (см. Двух-квантовые реакции), т.к. требует интенсивностей ~ 10б-109 Вт/см2. Для трехквантовых процессов (n = 3) требуются более высокие интенсивности света (~ 108-1011 Вт/см2) и т. д. В столь интенсивном поле атом или молекула из конечного состояния дискретного спектра обычно быстро переходит в ионизац. непрерывный спектр (континуум); соответствующий (п + 1)-фотонный процесс наблюдается по возникновению в системе заряженных частиц (электронов или ионов). В случае молекул часто происходит их фрагментация и наблюдается масс-спектр молекулярных и фраг-ментных ионов и радикалов.

Атом (молекула) может резонансно поглотить п фотонов с гораздо большей вероятностью, поднимаясь по "лестнице" последоват. квантовых уровней (рис. 1,б). Т. наз. многоступенчатое резонансное возбуждение молекул возможно в многочастотном лазерном излучении, если частоты лазеров настроены точно на частоты последоват. квантовых переходов. Т. к. времена жизни промежут. квантовых состояний конечны (обычно от 10-6 до 10-11 с), то лазерные импульсы могут воздействовать на атом (молекулу) поочередно, если длительность импульсов и интервал времени между ними меньше времени жизни соответствующего состояния. Если все лазерные импульсы воздействуют одновременно, наряду с многоступенчатым резонансным возбуждением происходит М.п., при к-ром атом (молекула) поглощает одновременно неск. фотонов и, не задерживаясь на промежут. уровнях, достигает конечного состояния. Различие между этими процессами проявляется в том, что многоступенчатое возбуждение гораздо более чувствительно к точности резонанса по частоте с промежут. уровнем по сравнению с М.п.

Поскольку многоступенчатое возбуждение является комбинацией однофотонных квантовых переходов, оно требует гораздо меньших интенсивностей света, чем М.п., происходящий без участия промежут. резонансных уровней, и возможно при умеренных интенсивностях лазерного излучения (~ 10-105 Вт/см2). Для электронных переходов многоступенчатое возбуждение требует применения неск. лазеров с перестраиваемой частотой. Колебат. переходы многоатомных молекул реализовать гораздо легче, т. к. колебат. уровни расположены почти на одинаковом расстоянии друг от друга по энергии (эквидистантны), а небольшие различия, обусловленные гармоничностью колебаний, м. б. компенсированы вращат. структурой колебат. полосы поглощения и ее уширением. В последнем случае многоатомная молекула (ВСl3, SF6, UF6 и др.) в поле монохроматич. лазерного ИК импульса с интенсивностью 106-108 Вт/см2, частота к-рого настроена в резонанс с колебат. полосой поглощения, может поглотить неск. десятков ИК фотонов и достигнуть границы диссоциации (многофотонная ИК фотодиссоциация).

Между этими двумя крайними случаями (отсутствие промежут. резонансных уровней и, наоборот, точный резонанс с ними по частоте) существует плавный переход, когда частота излучения находится вблизи точного резонанса с промежут. уровнем (рис. 1,в). Если расстройка от точного резонанса невелика, но больше ширины промежут. уровня и ширины спектральной полосы лазерного импульса, происходит не многоступенчатое, а многофотонное возбуждение, но с гораздо более высокой вероятностью, чем при отсутствии точного резонанса. Этот случай реализуется, напр., при возбуждении ниж. колебат. уровней многоатомных молекул в одночастотном лазерном ИК излучении.

https://www.medpulse.ru/image/encyclopedia/6/1/2/8612.jpeg

Рис. 1. Многофотонное возбуждение высоколежащего энергетич. уровня Ek атома или молекулы из основного состояния Е0: а - одночастотным полем с частотой w при отсутствии промежут. резонансных уровней (I-потенциал ионизации); б-многочастотным полем, частоты к-рого w1, w2, w3, находятся в точном резонансе с промежут. квантовыми переходами из-за наличия уровней E1 и Е2; в - одночастотным полем с частотой w, удовлетворяющей двум условиям: двухбайтового резонанса (Е2 — Е0 =https://www.medpulse.ru/image/encyclopedia/6/1/3/8613.jpeg) с расстройкой относительно промежут. уровня E1 (пунктиром изображено положение точного резонанса) и точного резонанса на след. переходе (Ek - Е2 =https://www.medpulse.ru/image/encyclopedia/6/1/4/8614.jpeg).

Многофотонная фотодиссоциация молекулы в основном электронном состоянии под действием мощного импульса резонансного лазерного ИК излучения характерна для всех многоатомных молекул, обладающих большим числом колебат. степеней свободы. Благодаря исследованиям многофотонного возбуждения под воздействием интенсивного лазерного ИК излучения стала доступной информация о таких св-вах многоатомных молекул в высоковозбужденных колебат. состояниях, как внутри- и межмодовый ангармо-низм и стохастизация колебат. энергии из-за взаимод. колебаний, энергетич. граница образования квазиконтинуума колебат. состояний, внутри- и межмол. релаксация возбуждения (рис. 2).

М.п., индуцируемые лазерным излучением в атомах и молекулах, имеют ряд важных применений. Резонансная лазерная ионизация атомов позволяет резонансно превращать атом данного элемента (или даже изотоп, при наличии изотопич. сдвига для спектральных квантовых переходов) в ион. Образованные ионы можно, во-первых, детектировать со 100%-ной вероятностью. На этом основана резонансная фотоионизац. лазерная спектроскопия, обладающая наиб. чувствительностью среди методов оптич. спектроскопии. В случае молекул возможно одновременное измерение всего масс-спектра образующихся фотоионов, что лежит в основе лазерной масс-спектрометрии. Во-вторых, образованные ионы можно собирать в коллекторах, что служит основой фотоионизац. метода изотопов разделения. Резонансное колебательное ИК возбуждение многоатомных молекул в газовой фазе приводит к их изотонически-селективной фото-диссоциации. На этом основан практически важный метод разделения изотопов легких элементов. Многофотонная ИК фотодиссоциация молекул обеспечивает избират. фотодиссоциацию молекул определенного сорта в смеси, что позволяет осуществлять направленный радикальный хим. синтез, трудно осуществляемый в термически равновесных условиях [напр., (CF3)3CI].

https://www.medpulse.ru/image/encyclopedia/6/1/5/8615.jpeg

Рис. 2. Многофотонные процессы возбуждения и диссоциации многоатомной молекулы интенсивным лазерным ИК возбуждением, частота к-рого настроена в резонанс с колебат. полосой поглощения молекулы. Внизу-дискретные колебательно-вращат. уровни резонансных с полем колебаний; Ekk-энергетич. граница относительно широкой полосы поглощения, постепенно сдвигающаяся в длинноволновую область из-за ангармонизма колебаний; выше энергии диссоциации D0-континуум состояний перевозбужденной молекулы, подвергающейся мономолекулярному распаду.


Многофотонное электронное возбуждение высоколежащих состояний молекул видимым или УФ излучением позволяет исследовать молекулы в области энергий, соответствующей вакуумному УФ, и, в частности, позволяет открывать новые каналы фотохим. р-ций из высоковозбужденных синглетных и триплетных состояний. Для молекул в р-ре особенно эффективно многофотонное возбуждение с помощью мощных ультракоротких лазерных импульсов длительности 10-11-10-13 с, к-рая меньше времени жизни промежут. электронных состояний. Осуществлены М. п. резонансного возбуждения NH3, CF3I, UF6 и др. совместным действием ИК и УФ лазерного излучения, при к-рых ИК излучение обеспечивает резонансное возбуждение колебаний, а УФ излучение - электронное возбуждение молекулы. Такой М.п. лежит в основе еще одного универсального метода лазерного разделения изотопов (в частности, урана), т. к. в ИК спектре проявляется отчетливый изотопич. сдвиг для изотопа любого элемента.

Лит.: Летохов В. С., Нелинейные селективные фотопроцессы в атомах и молекулах, М., 1983; Делоне Н. Б., Крайнев В. П., Атом в сильном световом поле, 2 изд., М., 1984; Летохов В. С., Лазерная фотоионизационная спектроскопия, М., 1987. B.C. Летохов.



-метилацетофенон -метоксиацетофенон 2-меркаптобензотиазол 2-меркаптоэтиламин 2-метил-5-винилпиридин N-метилпирролидон Магнезоны Магнетохимия Магниевые удобрения Магний Магнийорганические соединения Магнитная восприимчивость Магнитная постоянная Магнитно-спиновые эффекты Магнитные материалы Магнитный момент Магния галогениды Магния гидроксид Магния карбонат Магния нитрат Магния оксид Магния перхлорат Магния сплавы Магния сульфат Мазут Майзенхаймера перегруппировка Мак-лафферти перегруппировка Мак-фадьена-стивенса реакция Макарова фазы Маковое масло Макро- и микрокомпоненты Макрокинетика Макролиды Макромолекула Макромономеры Макропористые ионообменные смолы Макрорадикалы Максимальная работа реакции Малапрада реакция Малахитовый зеленый Малеиновая и фумаровая кислоты Малеиновый ангидрид Малоновая кислота Малоновый эфир Малононитрил Мальтены Мальтоза Мальтол Манганаты Манганин Маннаны Маннит Манниха реакция Манноза Маноилоксиды Манометры Маноол Марганец Марганецорганические соединения Марганца карбонат Марганца карбонилы Марганца нитрат Марганца оксиды Марганца сульфат Марганцевые удобрения Маскирование Маслонаполненные каучуки Маслостойкость Масляная кислота Масляные краски Масляные лаки Масляный альдегид Масс-спектрометрия Массовое число Массообмен Мастики Мастикс Масштабный переход Маточные средства Матрица плотности Матричные рибонуклеиновые кислоты Матричный синтез Машинные масла Меди ацетаты Меди гидроксиды Меди карбонаты Меди нитрат Меди оксиды Меди сплавы Меди сульфат Меди сульфиды Меди хлориды Медицинские масла Медноаммиачные волокна Медные удобрения Медь Медьорганические соединения Меервейна реакция Межгалогенные соединения Межкристаллитная коррозия Межмолекулярные взаимодействия Межфазная поликонденсация Межфазные скачки потенциала Межфазный катализ Мезаконовая кислота Мезидин Мезитила окись Мезитилен Мезо Мезоионные соединения Мезоксалевая кислота Мезомерия Мезомерный эффект Мезонная химия Мейера - шустера перегруппировка Мейера реакция Меламин Меланины Мелем Мельхиор Мембранный катализ Мембранный потенциал Мембраны биологические Мембраны жидкие Мембраны ионообменные Мембраны разделительные Менделевий Ментадиены Ментаны Ментены Ментол Ментон Меншуткина реакция Мепробamat Меркаптаны Меркаптохинолины Меркуриметрия Мерсеризация Мета Метаболизм Метакриламид Метакриловая кислота Метакрилонитрил Металепсия Металлиды Металлизация полимеров Металлилхлорид Металлирование Металлическая связь Металлические волокна Металлические кристаллы Металлические радиусы Металлические соединения Металлов окисление Металлокомплексный катализ Металлопласты Металлополимеры Металлопротеиды Металлотермия Металлоцены Металлургия Металлы Металлы органические Метальдегид Метан Метанол Метансульфокислота Метансульфохлорид Метатезис Метафосфаты органические Метил-b-нафтилкетоh Метилакрилат Метилаль Метиламины Метилацетат Метилацетилен Метилбензолсульфонат Метилвинилкетон Метилдихлорфосфат Метилдихлорфосфин Метилдихлорфосфит Метилдихлорфосфонат Метилдофа Метиленовый голубой Метиленхлорид Метилиафталины Метилизобутилкетон Метилизотиоцианат Метилизоцианат Метилметакрилат Метилнонилацетальдегид Метиловый спирт Метилсерная кислота Метилстиролы Метилтетрафторфосфоран Метилтимоловый синий Метилфторид Метилхлорид Метилхлорсиланы Метилцеллюлоза Метилэтилбензолы Метилэтилкетон Метиновые красители Метионин Метионинметилсульфонийхлорид Механизм реакции Механические процессы Механические свойства Механохимия Меченые атомы Меченые соединения Мешалки Микотоксины Микробиологический синтез Микроволновая спектроскопия Микрография Микрокапсулирование Микрокристаллоскопия Микроудобрения Микрофильтрация Микрохимический анализ Микроэлементы Микроэмульсии Миллона реакция Минерал Минерализация Минеральные воды Минеральные удобрения Минорные нуклеозиды Миоглобин Миозин Мирцен Мирценаль Митомицины Михаэлиса-беккера реакция Михаэля реакция Михлера кетон Мицеллирный катализ Мицеллообразование Мицеллы Мицеллярные системы Мицунобу реакция Многокомпонентные системы Многофотонные процессы Мовеин Модакриловые волокна Моделирование Модификация белков Модифицирование древесины Модифицирование полимеров Молекула Молекулярная биология Молекулярная динамика Молекулярная масса Молекулярная масса полимера Молекулярная механика Молекулярность реакции Молекулярные интегралы Молекулярные комплексы Молекулярные кристаллы Молекулярные модели Молекулярные соединения Молекулярные спектры Молекулярный анализ Молибдаты Молибден Молибдена карбонилы Молибдена оксиды Молибдена сплавы Молибдена фториды Молибдена хлориды Молибденовые удобрения Моллюскоциды Молочная кислота Моляльность Молярность Монель-металл Моноаминоксидазы Моноглим Монокристаллов выращивание Монокристаллы Мономеры Мономолекулярные реакции Мономолекулярный слой Мононить Моносахариды Монофенолмонооксигеназы Монохлорукссусная кислота Моноэтаноламин Морин Морозостойкость Морская коррозия Морфин Морфинановые алкалоиды Морфолин Морфотропия Моторные масла Моторные топлива Мочевина Мочевины цикл Мощность дозы Моющее действие Мукайямы реакция Мукополисахариды Мультиплетность Мумия Муравьиная кислота Муравьиный альдегид Мурексид Мускусы Мутагены Мутаротация Мутации Мыла Мылонафт Мышьяк Мышьяка гидрид Мышьяка хлориды Мышьякорганические соединения Мюон Мюоний Мягчители Мёссбауэровская спектроскопия