Словарь научных терминов

Ионный обмен

ИОННЫЙ ОБМЕН, обратимый процесс стехиометрич. обмена ионами между двумя контактирующими фазами. Обычно одна из фаз р-р электролита, другая - ионит. Диссоциация ионогенной группы ионита дает ионную пару, "фиксированный ион" к-рой ковалентно связан с каркасом (матрицей) ионита, а "противоион" подвижен и может обмениваться на ионы одноименного заряда, поступающие из "внешнего" р-ра. Благодаря эквивалентности обмена ионами обе фазы сохраняют электронейтральность в течение всего процесса. Принято рассматривать И.о. как гетерог. хим. р-цию обмена и количественно характеризовать ее одной из трех констант равновесия К: концентрационной (не учитывает коэф. активности компонентов); кажущейся (учитывает коэф. активности только в р-ре); термодинамической (учитывает коэф. активности в р-ре и фазе ионита). К определяют из ур-ния Никольского:

K = (c1/a1)1/z1(a2/c2)1/z2

где c1 и с2 - концентрации или активности противоионов 1 и ионов 2 в равновесном р-ре, a1 и а2 - концентрации или активности ионов 1 и 2 в равновесной фазе ионита, z1 и z2 - зарядовые числа ионов. Изменение термодинамич. потенциала Гиббса в ходе И. о. подчиняется ур-нию: DG = — RTlnK. В процессе И. о. меняется также объем сорбента Q, совершается работа А изотермич. расширения (сжатия), причем A = pDQ, где p - осмотич. давление в фазе сорбента; поэтому суммарное значение DG = - RTlnK - pDQ. Однако в подавляющем большинстве случаев вторым членом ур-ния можно пренебречь. В простейшем случае И.о. система содержит два типа обменивающихся ионов и, следовательно, характеризуется четырьмя равновесными концентрациями (для каждого иона в р-ре и в ионите). Все задачи решаются на основе системы четырех ур-ний: баланса, изотермы И.о., эквивалентности обмена и электронейтральности. Задачу нахождения К можно свести к эксперим. определению равновесной концентрации с одного компонента в р-ре. В случае обмена однозарядных ионов справедливо ур-ние а = Ка0с/[с0 + (К — 1)с], где а - равновесная концентрация иона в фазе ионита, а0 - обменная емкость ионита, с0 - концентрация исходного р-ра. Это ур-ние иллюстрирует связь вида изотермы со значением К (рис. 1).
https://www.medpulse.ru/image/encyclopedia/0/6/4/7064.jpeg
Рис. 1. Изотермы ионного обмена для систем с разл. значениями констант равновесия (А0 - исходное кол-во в-ва, m - масса р-ра, v - объем р-ра).

При расчетах обмена смесей ионов на практике исходят из предположения, что значения К для каждого из компонентов в индивидуальных р-рах и в смеси тождественны. Это положение хорошо выполняется при сорбции микрокомпонентов на фоне макрокомпонента и в случае разб. (до 0,1 н.) р-ров любого состава. Сорбируемость ионов возрастает с увеличением заряда иона, у ионов с равными зарядами - с уменьшением степени их гидратации. При расчетах равновесий И.о. необходимо учитывать степень ионизации функциональных групп ионитов и степень диссоциации к-т и оснований в р-рах. Во многих реальных ионообменных системах И. о. сопровождается побочными явлениями, в первую очередь комплексообразованием, переносом р-рителя (воды), неэквивалентным обменом, окислит.-восстановит. р-циями. Значения К для сорбции на комплексообразующих сорбентах больше, чем К обычного И. о. При И. о. многих орг. ионов помимо их удерживания ионогенными функц. группами сорбентов имеет место и дополнит. взаимод. этих ионов с матрицей сорбента (межмол. дисперсионные силы, водородная связь). Вследствие этого К для орг. соед. часто на 1-2 порядка выше, чем для неорганических. Поглощение воды ионитами сопровождается увеличением объема зерен и слоя сорбента и зависит от суммарного солесодержания р-ра и степени сшивки ионита. При расчетах, учитывающих поглощение воды (р-рителя), вода рассматривается как равноценный компонент ионообменной системы, а константа равновесия И.о. KW находится из ур-ния:
https://www.medpulse.ru/image/encyclopedia/0/6/5/7065.jpeg
где К - термодинамич. константа равновесия И.о., aW и cW - активности воды в фазе сорбента и р-ре, W - число молей воды, приходящееся на 1 эквивалент емкости ионита, https://www.medpulse.ru/image/encyclopedia/0/6/6/7066.jpeg - эквивалентная доля i-гo компонента в сорбенте. Неэквивалентный И. о. обусловлен проникновением необменивающихся катионов и анионов электролита в фазу ионита, а также взаимод. не полностью диссоциированной многоосновной к-ты с функц. группами анионита или многозарядных оснований с катионитом. Окислит.-восстановит. р-ции для собственно ионообменных сорбентов обычно обусловлены низкомол. примесями в них, удаляемыми предварит. обработкой сорбентов к-тами, щелочами, окислителями.
Кинетика. Процесс И.о. включает 5 последоват. стадий: перемещение сорбируемого иона к пов-сти зерна сорбента (1) и внутри него (2), собственно И.о. (3), перемещение вытесняемого иона внутри зерна сорбента (4) и от его пов-сти в р-ре (5). Все стадии, кроме собственно хим. р-ции обмена, носят диффузионный характер. Лимитирующую стадию определяют экспериментально: если это хим. р-ция обмена, то скорость процесса не зависит от размера зерен сорбента; если внутр. диффузия, то сорбция возрастает после перерывов в опыте (явление "отдыха"); если внеш. диффузия, то скорость поглощения зависит от интенсивности перемешивания в статич. условиях или от скорости прохождения р-ра в динамич. опыте. Расчеты диффузионных стадий базируются на законах Фика (см. Диффузия). Коэф. диффузии определяют экспериментально, их значения для внеш. диффузии порядка 10-5 см2/с, для внутренней - от 10-6 до 10-11 см2/с. Коэф. внутр. диффузии орг. ионов на 1-2 порядка меньше, чем неорг. ионов. Особо крупные орг. ионы (напр., антибиотиков) не проникают во внутр. часть зерен малонабухающих (даже слабосшитых) сорбентов, в результате чего наблюдается состояние "ложного" равновесия. Поэтому для эффективной реализации таких процессов часто рекомендуют использовать т. наз. поверхностно-слоистые сорбенты, в к-рых ионогенные группы расположены тонким слоем вблизи пов-сти зерен. Уменьшение пути диффузии в результате уменьшения размера зерен (соотв. и межзернового пространства) приводит к резкому увеличению скорости И.о. Вследствие малой энергии активации диффузии скорость И.о. мало зависит от т-ры.
Динамика. Большинство ионообменных процессов проводится в динамич. условиях - пропусканием р-ра через неподвижный слой сорбента в периодич. процессах или противоточным движением р-ра и сорбента в непрерывных процессах (рис. 2). Преимущества динамич. способа -глубокая очистка р-ра от примесей (благодаря контакту со свежими порциями сорбента) и полное использование обменной емкости слоя (вследствие увода током р-ра продуктов ионообменной р-ции из сферы р-ции).
https://www.medpulse.ru/image/encyclopedia/0/6/7/7067.jpeg
Рис. 2. Схемы ионообменного умягчения воды (М = Са, Mg) на неподвижном слое сорбента (а) и в противотоке (б) с движущимися слоями сорбента (NaR, MR2) и потоками р-ров (умягчаемая вода и регенерирующий р-р NaCl).

Для характеристики сорбционной способности ионита в динамич. условиях используют ур-ние Шилова: q = kX — t, где q - время защитного действия слоя сорбента, Х - длина слоя сорбента, k - коэф. защитного действия слоя, зависящий от величины равновесной адсорбции, концентрации иона в р-ре и скорости потока р-ра, t - потеря времени защитного действия слоя. Все расчеты динамики И.о. базируются на решении системы ур-ний для каждого компонента. Ур-ние баланса имеет вид:
https://www.medpulse.ru/image/encyclopedia/0/6/8/7068.jpeg
где V - линейная скорость потока р-ра, e - порозность сорбента (объем межзернового пространства в долях от общего объема сорбента), Dп - коэф. продольной диффузии, t - время от начала опыта до "проскока" - появления удаляемого компонента за слоем сорбента. Во мн. случаях членами, отражающими продольную диффузию (за исключением стадии регенерации) и изменение концентрации в р-ре, можно пренебречь. Тогда ур-ние баланса принимает вид:
https://www.medpulse.ru/image/encyclopedia/0/6/9/7069.jpeg
Применение. Процессы И. о. используют в аналит. химии и в пром-сти. С помощью И.о. концентрируют следовые кол-ва определяемых в-в, определяют суммарное солесодержание р-ров, удаляют мешающие анализу ионы, количественно разделяют компоненты сложных смесей (см. Ионообменная хроматография). И. о. применяют: для получения умягченной и обессоленной воды (см. Водоподготовка) в тепловой и атомной энергетике, в электронной пром-сти; в цветной металлургии - при комплексной гидрометаллургич. переработке бедных руд цветных, редких и благородных металлов; в пищ. пром-сти - в произ-ве сахара, при переработке гидролизатов; в мед. пром-сти - при получении антибиотиков и др. лек. ср-в, а также во мн. отраслях пром-сти -для очистки сточных вод в целях организации оборотного водоснабжения и извлечения ценных компонентов, очистки воздуха. Разрабатываются ионообменные методы комплексного извлечения из океанской воды ценных микрокомпонентов. Промышленные аппараты для реализации И.о. Подразделяются на 3 группы: установки типа смесителей-отстойников, фильтры с неподвижным и подвижным слоями сорбента. Аппараты первого типа используют в гидрометаллургии. В фильтрах с неподвижным слоем сорбента исходные и регенерац. р-ры подаются в одном направлении (поточные схемы) или в противоположных (противоточные схемы). Такие аппараты используются для ионообменной очистки р-ров, напр., при умягчении и обессоливании воды. В непрерывно действующих противоточных аппаратах подвижный сорбент, как правило, перемещается сверху вниз под действием силы тяжести. Конструктивно противоточные аппараты подразделяются на 3 группы: со взвешенным или кипящим слоем ионита, с непрерывным движением плотного слоя, с попеременным движением р-ра через неподвижный слой и перемещением слоя при прекращении движения р-ра. Для разделения смесей близких по св-вам компонентов (напр., изотопов) используют малопроизводительные, но эффективные аппараты с поочередным движением фаз и со сплошным слоем периодически выгружаемого сорбента. Технол. схема И.о. включает: сорбцию извлекаемых или удаляемых элементов, взрыхление слоя ионита (током р-ра снизу вверх), регенерацию ионита, промывку слоя ионита от регенерирующего р-ра. Лит.: Солдатов B. C., Простые ионообменные равновесия, Минск, 1972; Основы расчета и оптимизации ионообменных процессов, М., 1972; Либинсон Г. С., Сорбция органических соединений ионитами, М., 1979; Кокотов Ю. А., Иониты и ионный обмен, Л., 1980; Сенявин М. М., Ионный обмен в технологии и анализе неорганических веществ, М., 1980; его же, в сб.: Ионный обмен, М., 1981, с. 5-24; Горшков В. И., Сафонов М. С., Воскресенский Н. М., Ионный обмен в противоточных колоннах, М., 1981; Веницианов Е. В., Рубинштейн Р. Н., Динамика сорбции из жидких сред, М., 1983. М. М. Сенявин.


Иванова реакция Игданит Идеальный газ Идентификация Изатин Изафенин Избирательность анализа Известковые удобрения Известняк Известь Измельчение Изо.. Изоmeризat Изоамилацетат Изоамиловый спирт Изобутилен Изобутиловый спирт Изовалериановая кислота Изовалериановый альдегид Изоиндол Изоксазол Изолейцин Изолированная система Изолобальной аналогии принцип Изоляционные масла Изомасляный альдегид Изомеразы Изомеризация Изомерия Изомерия атомных ядер Изоморфизм Изоникотиновая кислота Изонитрилы Изонитрильные комплексы переходных металлов Изопрен Изопреновые каучуки синтетические Изопреноиды Изопропаноламины Изопропилбензол Изопропиловый спирт Изотактические полимеры Изотахофорез Изотиазол Изотиоцианаты Изотопного разбавления метод Изотопные генераторы Изотопные индикаторы Изотопные эффекты Изотопный анализ Изотопный обмен Изотопов разделение Изотопы Изоферменты Изофталевая кислота Изофталоилхлорид Изохинолин Изохинолиновые алкалоиды Изоцианаты Изоцианаты блокированные Изоцинхомероновая кислота Изоцитрат-лиаза Изоэвгенол Изоэлектрическая точка Изумрудная зелень Илиды Имид-амидная перегруппировка Имидазол Имидазолины Имидофосфаты Имиды карболовых кислот Имиды металлов Имизин Иминиевые соли Иминоксильные радикалы Иминоэфиры Иммерсионные жидкости Иммобилизованные ферменты Иммуномодулирующие средства Иммунохимия Импедансный метод Импульсный радиолиз Импульсный фотолиз Ингибиторы Ингибиторы коррозии Индазол Индамины Индан Индандионы Индантрон Инден Индиго Индигоидные красители Индигокармин Индий Индикаторная бумага Индикаторные трубки Индикаторы Индия антимонид Индия арсенид Индия галогениды Индия оксиды Индия фосфид Индоанилины Индоксан Индол Индольные алкалоиды Индофенолы Индуктивный эффект Индукция химическая Индулины Индустриальные масла Инженерная энзимология Инициаторы радикальные Инициирование Инициирующие взрывчатые вещества Инкапаситанты Инозин Инозиты Инсектициды Инсулин Интенсивные параметры Интеркалаты Интерлейкины Интермедиат Интерметаллиды Интерфероны Инулин Инфразвуковые аппараты Инфракрасная спектроскопия Иод Иодбензол Иодиды Иодное число Иодные удобрения Иодозобензол Иодометрия Ион-молекулярные комплексы Ион-радикалы Ион-циклотронный резонанс Ионизации потенциал Ионизирующие излучения Иониты Ионная атмосфера Ионная имплантация Ионная полимеризация Ионная хроматография Ионно-молекулярные реакции Ионного рассеяния спектроскопия Ионные кристаллы Ионные пары Ионные радиусы Ионный выход Ионный микроанализ Ионный обмен Ионол Иономеры Ионометрия Иононы Ионообменная хроматография Ионообменные смолы Ионоселективные электроды Ионофоры Ионы Ионы в газах Иоцича реакция Иприт Ипсо-замещение Иридий Иридийорганические соединения Ирисаль Ирританты Искусственная пища Искусственные волокна Искусственный интеллект Испарение Итаконовая кислота Иттербий Иттрий Ихтиоциды Июпак