Словарь научных терминов

Эллипсометрия

ЭЛЛИПСОМЕТРИЯ, метод исследования св-в границы (пов-сти) раздела разл. сред и происходящих на ней явлений (адсорбция, окисление и др.) по параметрам эллиптич. поляризации отраженного света.
При отражении монохроматич. плоскополяризов. света, падающего под угломhttps://www.medpulse.ru/image/encyclopedia/7/8/2/18782.jpeg электромагн. волна, взаимодействуя с в-вом, обычно преобразуется в эллиптически поляризованную. Это объясняется тем, что электромагн. колебания, совершающиеся в плоскости падения (р-колебания) светового луча и в перпендикулярной к ней плоскости (s-колебания), при отражении света по-разному изменяют амплитуду напряженности электрич. поля Е и начальную фазуhttps://www.medpulse.ru/image/encyclopedia/7/8/3/18783.jpeg колебаний (рис.). Параметрами Е иhttps://www.medpulse.ru/image/encyclopedia/7/8/4/18784.jpeg характеризуются т. наз. комплексные амплитуды для р- и s-колебаний падающейhttps://www.medpulse.ru/image/encyclopedia/7/8/5/18785.jpeghttps://www.medpulse.ru/image/encyclopedia/7/8/6/18786.jpeg и отраженнойhttps://www.medpulse.ru/image/encyclopedia/7/8/7/18787.jpeg волн. Отношения амплитудhttps://www.medpulse.ru/image/encyclopedia/7/8/8/18788.jpeg или комплексные коэф. отражения, можно вычислить в рамках конкретной модели отражающей пов-сти, используя мат. аппарат теории комплексных чисел и электромагн. теорию света.

https://www.medpulse.ru/image/encyclopedia/7/8/9/18789.jpeg

Схема действия эллипсометра; пояснения в тексте.

Такой подход, наз. прямой задачей Э., позволяет записать осн. ур-ние Э.:

https://www.medpulse.ru/image/encyclopedia/7/9/0/18790.jpeg

гдеhttps://www.medpulse.ru/image/encyclopedia/7/9/1/18791.jpeg - соотв. для падающей и отраженной волн) иhttps://www.medpulse.ru/image/encyclopedia/7/9/2/18792.jpeg - эллипсометрич. углы, измеряемые с помощью спец. приборов - эллипсометров.
В простейшей схеме эллипсометра, приведенной на рис., монохроматич. свет от источника И, проходя через призму-поляризатор П, преобразуется в плоскополяризов. свет. При отражении от исследуемой пов-сти между р- и s-колеба-ниями возникает разность фазhttps://www.medpulse.ru/image/encyclopedia/7/9/3/18793.jpeg при этом конец вектора напряженности, характеризующего результирующее электрич. колебание, описывает эллипс. Компенсатор К приводит разность фаз между р- и s-колебаниями к нулю и снова преобразует свет в плоскополяризованный, к-рый можно полностью погасить анализатором А. Гашение фиксируется фотоприемником Ф. Значения азимутов поляризатора и анализатора в положении гашения связаны с угламиhttps://www.medpulse.ru/image/encyclopedia/7/9/4/18794.jpegиhttps://www.medpulse.ru/image/encyclopedia/7/9/5/18795.jpeg
Прямая задача Э. легко решается для геометрически плоской границы раздела полубесконечных сред; разработаны методы решения для более сложных систем, напр., для планарной многослойной системы тонких пленок заданной толщины с известными оптич. постоянными сред. Совпадение вычисленных значенийhttps://www.medpulse.ru/image/encyclopedia/7/9/6/18796.jpeg иhttps://www.medpulse.ru/image/encyclopedia/7/9/7/18797.jpeg с экспериментальными свидетельствует о корректности выбранной оптич. модели.
Однако, как правило, необходимо решать обратную задачу Э.- находить оптич. характеристики отражающей системы по измеренному набору значенийhttps://www.medpulse.ru/image/encyclopedia/7/9/8/18798.jpeg иhttps://www.medpulse.ru/image/encyclopedia/7/9/9/18799.jpeg при разных условиях: разл. углах падения светаhttps://www.medpulse.ru/image/encyclopedia/8/0/0/18800.jpeg падении света на изучаемую пов-сть из разных сред, использование света разл. частот (т. наз. спектральная Э.).
С помощью прямых вычислений обратная задача м. б. решена для случая отражения света от идеальной (резкой, гладкой) плоской границы раздела; в частности, по измеренным эллипсометрич. углам можно рассчитать оптич. константы (показатели преломления и поглощения) металлов. При этом даже для хорошо отполированной металлич. пов-сти модель идеальной границы раздела не всегда корректна, поэтому следует учитывать шероховатость реальной пов-сти. Общего решения обратной задачи не существует. Оптич. характеристики находят посредством номограмм, построенных по результатам решения прямой задачи на ЭВМ или с помощью спец. программ типа "поиск".
Классич. область применения Э. - исследования оптич. св-в материалов, в т. ч. измерения оптич. постоянных тонких (напр., оксидных) пленок, а также их толщин. Интерес к Э. возрос в 70-80-х гг. 20 в. в связи с особым значением, к-рое приобрели анализ структуры, изучение физ.-хим. св-в и контроль чистоты пов-стей благодаря быстрому развитию твердотельной (прежде всего полупроводниковой) электроники. Э. используют также в исследованиях физ. и хим. адсорбции в глубоком вакууме на плоских пов-стях Si, Ag, Pt и др., адсорбции полимеров на границе жидкость-газ и жидкость-жидкость, процессов катализа на микроуровне, св-в верх. слоев пов-стей, подвергнутых коррозии, в электрохимии для изучения окисления и восстановления электродов, в микробиологии для исследования оболочек клеток и липидных мембран и др.
Достоинства Э.: простота и быстрота измерений (имеются автоматич. эллипсометры), возможность производить их в ходе процесса (in situ), в вакууме, при высоких т-рах, в агрессивных средах; кроме того, при экспериментах пов-сти не загрязняются и не разрушаются. Недостаток метода -трудность правильного выбора модели отражающей системы и интерпретации результатов измерений. Поэтому наиб. перспективно сочетание Э. с др. методами исследования пов-сти, напр. с оже-спектроскопией, УФ и рентгеновской спектроскопией, методами дифракции электронов и рассеяния ионов.

Лит.: Основы эллипсометрии, под ред. А. В. Ржанова, Новосиб., 1979; Аззам Р., Башара Н., Эллипсометрия и поляризованный свет, пер. с англ., М., 1981; Громов В. К., Введение в эллипсометрию, Л., 1986; Пшеницын В. И., Абаев М. И., Лызлов Н. Ю., Эллипсометрия в физико-химических исследованиях, Л., 1986; Всесоюзные конференции по эллипсометрии. Сб. тр., Новосиб., 1980-91; Эллипсометрия. Теория, методы, приложения, ред. К. К. Свиташев, А. С. Мардежов, Новосиб., 1991.

3. М. Зорин.


2-этилгексанол Эбониты Эбулиоскопия Эвгенол Эвтектика Эдмана деградация Эженаль Эйкозаноиды Эйнштейний Экваториальное положение Эквивалент химический Экдизоны Эксергетйческий анализ Эксимеры Эксиплексы Экспресс-тесты Экспрессия гена Экстенсивные параметры Экстрагирование Экстракционная хроматография Экструзия полимеров Элаидиновая кислота Эластомеры Электретно-термический анализ Электреты Электрогравиметрия Электродиализ Электродные процессы Электродный потенциал Электроды Электроды сравнения Электроизоляционные масла Электрокапиллярные явления Электрокатализ Электрокинетические явления Электрокристаллизация Электролиз Электролитическая диссоциация Электролиты Электролиты неводные Электролиты твёрдые Электрометаллургия Электромиграционные методы Электрон Электронная корреляция Электронная микроскопия Электронная плотность Электронно-колебательное взаимодействие Электронные спектры Электронный парамагнитный резонанс Электронография Электроосаждение Электроосмос Электроотрицательность Электроперенос Электроповерхностные явления Электропроводность электролитов Электрорафинирование Электросинтез Электрофильные реакции Электрофорез Электрофотография Электрохимическая кинетика Электрохимическая обработка металлов Электрохимические сенсоры Электрохимические цепи Электрохимический импеданс Электрохимический потенциал Электрохимический ряд напряжений Электрохимический синтез Электрохимический эквивалент Электрохимия Электрохимия полупроводников Электрохимия расплавов Электроциклические реакции Электроэкстракция Элемент 106 Элемент 107 Элемент 108 Элемент 109 Элементарные частицы Элементный анализ Элементоорганические полимеры Элементоорганические соединения Элементы химические Эленол Эллипсометрия Эллмана реактив Эльбса реакции Эльтекова правило Эмали Эманационный метод Эмде расщепление Эметин Эмиссионный спектральный анализ Эмульсии Эмульсионная полимеризация Эмульсионные краски Эмульсолы Эмультал Энантиомеры Энантиоморфизм Энантиотопия Эндо Эндодезоксирибонуклеазы Эндорфины Энергия активации Энкефалины Энолаза Энтальпия образования Энтальпия реакции Энтеросептол Энтропия Энтропия активации Эозин Эпи... Эпимеризация Эпимеры Эписома Эпитаксия Эпихлоргидрин Эпихлоргидриновые каучуки Эпоксидирование Эпоксидное число Эпоксидные каучуки Эпоксидные клеи Эпоксидные лаки Эпоксидные смолы Эрбий Эргоалкалоиды Эрготамин Эритриновые алкалоиды Эритроизомеры Эрлиха реакция Эстрогены Этамбутол Этаминал-натрий Этан Этанол Этаноламиды жирных кислот Этаноламины Этара реакция Этерификация Этилакрилат Этиламины Этилацетат Этилбензол Этилен Этилен-пропиленовые каучуки Этилена сополимеры Этиленгликоль Этилендиамин Этилендиаминтетрауксусная кислота Этилендинитрамин Этиленимин Этиленкарбонат Этиленовые углеводороды Этиленоксид Этиленсульфид Этиленхлоргидрин Этиловая жидкость Этиловый спирт Этиловый эфир Этилсиликаты Этилхлорид Этилцеллюлоза Этилцеллюлозные лаки Этинилирование Этмозин Этролы Эфедрин Эфирное число Эфирные масла Эфироцеллюлозные лаки Эфиры простые Эфиры сложные Эффективный заряд атома Эшвайлера-кларка реакция