Словарь научных терминов
Электронография
ЭЛЕКТРОНОГРАФИЯ, метод исследования атомной структуры в-ва, гл. обр. кристаллов, основанный на дифракции электронов (см. Дифракционные методы). Существует неск. вариантов метода. Основным является Э. на просвет, при этом используют дифракцию электронов высоких энергий (50-300 кэВ, что соответствует длине волны ок. 5-10-3 нм). Э. проводят в спец. приборах - электронографах, в к-рых поддерживается вакуум 10-5-10-6 Па, время экспозиции ок. 1 с, или в трансмиссионных электронных микроскопах (см. Электронная микроскопия). Образцы для исследований готовят в виде тонких пленок толщиной 10-50 нм, осаждая кристаллич. в-во из р-ров или суспензий, либо получая пленки вакуумным распылением. Образцы представляют собой мозаичный монокристалл, текстуру или поликристалл.

http://www.medpulse.ru/image/encyclopedia/5/8/2/18582.jpeg

Рис. 1. Электронограмма от текстуры In2Se3.

Дифракционная картина - электронограмма - возникает в результате прохождения начального монохроматич. пучка электронов через образец и представляет собой совокупность упорядочение расположенных дифракц. пятен - рефлексов (рис. 1), к-рые определяются расположением атомов в исследуемом объекте. Рефлексы характеризуются межплоскостными расстояниями dhkl в кристалле и интенсивностью Ihkl, где h, k и l - миллеровские индексы (см. Кристаллы). По величинам и по расположению рефлексов определяют элементарную ячейку кристалла; используя также данные по интенсивности рефлексов, можно определить атомную структуру кристалла. Методы расчета атомной структуры в Э. близки к применяемым в рентгеновском структурном анализе. Расчеты, обычно проводимые на ЭВМ, позволяют установить координаты атомов, расстояния между ними и т. д. (рис. 2).

http://www.medpulse.ru/image/encyclopedia/5/8/3/18583.jpeg

Рис. 2. Кристаллическая структура 2,5-дикетопиперазина, рассчитанная с помощью ЭВМ. Сгущение линий соответствует положениям атомов С, N, О и Н.

Электронографически можно проводить фазовый анализ в-ва (в этом случае совокупность значений Ihkl и dhkl сравнивают с имеющимися банками данных), можно изучать фазовые переходы в образцах и устанавливать геом. соотношения между возникающими фазами, исследовать полиморфизм и политипию. Методом Э. исследованы структуры ионных кристаллов, кристаллогидратов, оксидов, карбидов и нитридов металлов, полупроводниковых соединений, орг. в-в, полимеров, белков, разл. минералов (в частности, слоистых силикатов) и др. Э. часто комбинируют с электронной микроскопией высокого разрешения, позволяющей получать прямое изображение атомной решетки кристалла.
При изучении массивных образцов используют дифракцию электронов на отражение, когда падающий пучок как бы скользит по пов-сти образца, проникая на глубину 5-50 нм. Дифракц. картина в этом случае отражает структуру пов-сти. При этом можно изучать явления адсорбции посторонних атомов, эпитаксию, процессы окисления и т. п. Если кристалл обладает атомной структурой, близкой к идеальной, и дифракция на просвет или на отражение происходит на глубине ~ 50 нм или более, то получается дифракционная картина с т. наз. линиями Кикучи, на основании к-рой можно делать выводы о совершенстве структуры.
В Э. электронов низких энергий (10-300 эВ) электроны проникают на глубину всего в 1-2 атомных слоя. По интенсивности отраженных пучков можно установить строение поверхностной атомной решетки кристаллов. Этим методом установлено отличие поверхностной структуры кристаллов Ge, Si, GaAs, Mo, Au и мн. др. от внутр. структуры, т. е. наличие поверхностной сверхструктуры. Так, напр., для Si на Грани (111) образуется структура, обозначаемая 7 x 7, т. е. период поверхностной решетки в этом случае превышает период внутр. атомной структуры в 7 раз, в др. кристаллах образуются поверхностные решетки 2 х 2, 2 х 4, 4 х 4 и т. п.
В Э. при дифракции в электронном микроскопе применяют др. спец. методы, напр. метод сходящегося пучка и нанодифракции тонкого луча. В первом случае получают дифракц. картины, по к-рым можно определять симметрию (пространств. группу) исследуемого кристалла. Второй метод дает возможность изучать мельчайшие кристаллы с поперечником в неск. нм. Известна также Э. молекул в газах, к-рая позволяет устанавливать строение свободных молекул орг. и неорг. в-в, молекул в парах ряда соединений, напр. галогенидов металлов.

Лит.: Вайнштейн Б. К., Структурная электронография, М., 1956; Высоковольтная электронография в исследовании слоистых минералов, М., 1979; Electron diffraction technique, v. 1-2, ed. by I. M. Cowley, Oxf., 1992-93.

Б. К. Вайнштейн.


2-этилгексанол Эбониты Эбулиоскопия Эвгенол Эвтектика Эдмана деградация Эженаль Эйкозаноиды Эйнштейний Экваториальное положение Эквивалент химический Экдизоны Эксергетйческий анализ Эксимеры Эксиплексы Экспресс-тесты Экспрессия гена Экстенсивные параметры Экстрагирование Экстракционная хроматография Экструзия полимеров Элаидиновая кислота Эластомеры Электретно-термический анализ Электреты Электрогравиметрия Электродиализ Электродные процессы Электродный потенциал Электроды Электроды сравнения Электроизоляционные масла Электрокапиллярные явления Электрокатализ Электрокинетические явления Электрокристаллизация Электролиз Электролитическая диссоциация Электролиты Электролиты неводные Электролиты твёрдые Электрометаллургия Электромиграционные методы Электрон Электронная корреляция Электронная микроскопия Электронная плотность Электронно-колебательное взаимодействие Электронные спектры Электронный парамагнитный резонанс Электронография Электроосаждение Электроосмос Электроотрицательность Электроперенос Электроповерхностные явления Электропроводность электролитов Электрорафинирование Электросинтез Электрофильные реакции Электрофорез Электрофотография Электрохимическая кинетика Электрохимическая обработка металлов Электрохимические сенсоры Электрохимические цепи Электрохимический импеданс Электрохимический потенциал Электрохимический ряд напряжений Электрохимический синтез Электрохимический эквивалент Электрохимия Электрохимия полупроводников Электрохимия расплавов Электроциклические реакции Электроэкстракция Элемент 106 Элемент 107 Элемент 108 Элемент 109 Элементарные частицы Элементный анализ Элементоорганические полимеры Элементоорганические соединения Элементы химические Эленол Эллипсометрия Эллмана реактив Эльбса реакции Эльтекова правило Эмали Эманационный метод Эмде расщепление Эметин Эмиссионный спектральный анализ Эмульсии Эмульсионная полимеризация Эмульсионные краски Эмульсолы Эмультал Энантиомеры Энантиоморфизм Энантиотопия Эндо Эндодезоксирибонуклеазы Эндорфины Энергия активации Энкефалины Энолаза Энтальпия образования Энтальпия реакции Энтеросептол Энтропия Энтропия активации Эозин Эпи... Эпимеризация Эпимеры Эписома Эпитаксия Эпихлоргидрин Эпихлоргидриновые каучуки Эпоксидирование Эпоксидное число Эпоксидные каучуки Эпоксидные клеи Эпоксидные лаки Эпоксидные смолы Эрбий Эргоалкалоиды Эрготамин Эритриновые алкалоиды Эритроизомеры Эрлиха реакция Эстрогены Этамбутол Этаминал-натрий Этан Этанол Этаноламиды жирных кислот Этаноламины Этара реакция Этерификация Этилакрилат Этиламины Этилацетат Этилбензол Этилен Этилен-пропиленовые каучуки Этилена сополимеры Этиленгликоль Этилендиамин Этилендиаминтетрауксусная кислота Этилендинитрамин Этиленимин Этиленкарбонат Этиленовые углеводороды Этиленоксид Этиленсульфид Этиленхлоргидрин Этиловая жидкость Этиловый спирт Этиловый эфир Этилсиликаты Этилхлорид Этилцеллюлоза Этилцеллюлозные лаки Этинилирование Этмозин Этролы Эфедрин Эфирное число Эфирные масла Эфироцеллюлозные лаки Эфиры простые Эфиры сложные Эффективный заряд атома Эшвайлера-кларка реакция