Словарь научных терминов

Электрокинетические явления

ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ, группа явлений, наблюдаемых в дисперсных системах, мембранах и капиллярах; включает электроосмос, электрофорез, потенциал течения и потенциал оседания (седиментационный потенциал, или эффект Дорна). Электроосмос - течение жидкости в капиллярах и пористых телах, вызванное внеш. электрич. полем; обратное ему Э. я. - потенциал течения - появление электрич. разности потенциалов на концах капилляра или мембраны при протекании жидкости. Электрофорез - движение твердых частиц или капель, взвешенных в электролите, при наложении электрич. поля. Обратное Э. я.-появление электрич. разности потенциалов на границах облака оседающих (седиментирующих) частиц, взвешенных в электролите (эффект Дорна).
Осн. роль в возникновении Э. я. играет двойной электрический слой (ДЭС), формирующийся у пов-сти раздела фаз. Внеш. электрич. поле, направленное вдоль границы раздела фаз, вызывает смещение одного из ионных слоев, образующих ДЭС, по отношению к другому, что приводит к относит. перемещению фаз, т. е. к электроосмосу или электрофорезу. Аналогичным образом при относит. движении фаз, вызываемом мех. силами, происходит перемещение ионных слоев ДЭС, что приводит к пространств. разделению зарядов (поляризации) в направлении движения и к перепаду электрич. потенциала (потенциал течения, потенциал оседания).
Рассмотрим, напр., электроосмотич. скольжение электролита в капилляре или порах мембраны. Примем для определенности, что на пов-сти адсорбированы отрицат. ионы, к-рые закреплены неподвижно, а положит. ионы формируют диффузную часть ДЭС. Внеш. поле Е направлено вдоль пов-сти. Электростатич. сила, действующая на любой произвольный элемент диффузной части ДЭС, вызывает движение этого элемента вдоль пов-сти. Поскольку плотность заряда в диффузной части ДЭС Ф(х) меняется в зависимости от расстояния до пов-сти х (рис.), разл. слои жидкого электролита движутся с разными скоростями. Стационарное состояние (неизменность во времени скорости течения) будет достигнуто, когда действующая на произвольный слой жидкости электростатич. сила скомпенсируется силами вязкого сопротивления, возникающими из-за различия скоростей движения слоев жидкости, находящихся на разном удалении от пов-сти. Ур-ния гидродинамики, описывающие движение жидкости при постоянных вязкости жидкостиhttps://www.medpulse.ru/image/encyclopedia/2/3/1/18231.jpeg и ее дизлектрич. проницаемостиhttps://www.medpulse.ru/image/encyclopedia/2/3/2/18232.jpeg м. б. решены точно, результатом решения является распределение скорости течения:

https://www.medpulse.ru/image/encyclopedia/2/3/3/18233.jpeg

Здесьhttps://www.medpulse.ru/image/encyclopedia/2/3/4/18234.jpeg- значение электрич. потенциала на расстоянииhttps://www.medpulse.ru/image/encyclopedia/2/3/5/18235.jpeg от пов-сти, где скорость течения жидкости обращается в нуль (т. наз. плоскость скольжения).

https://www.medpulse.ru/image/encyclopedia/2/3/6/18236.jpeg

Распределение потенциала в двойном электрическом слое; х - расстояние от пов-сти.

На больших расстояниях от пов-сти Ф(х)https://www.medpulse.ru/image/encyclopedia/2/3/7/18237.jpeg 0 и скорость течения вне пределов диффузной части ДЭС оказывается постоянной:

https://www.medpulse.ru/image/encyclopedia/2/3/8/18238.jpeg

Эта постоянная величина наз. скоростью электроосмотич. скольжения. Такое назв. было введено потому, что для толщин ДЭС, много меньших характерных размеров капилляров с электролитом или твердых частиц дисперсной фазы, течение выглядит как скольжение жидкости вдоль твердой пов-сти со скоростью иs.
Параметрhttps://www.medpulse.ru/image/encyclopedia/2/3/9/18239.jpeg наз. дзета-потенциалом (https://www.medpulse.ru/image/encyclopedia/2/4/0/18240.jpeg-потенциалом), является осн. характеристикой Э. я. В реальных системах вязкость и диэлектрич. проницаемость жидкости зависят от расстояния до твердой пов-сти, однако и в этих случаях скорость электроосмотич. скольжения также можно представить в виде выражения (2), но интерпретация параметраhttps://www.medpulse.ru/image/encyclopedia/2/4/1/18241.jpeg усложняется, поскольку он несет в себе информацию не только о распределении электростатич. потенциала в диффузной части ДЭС, но и об особенностях структуры и реологич. поведения жидкости в граничных слоях. Несмотря на сложность интерпретацииhttps://www.medpulse.ru/image/encyclopedia/2/4/2/18242.jpeg-потенциала, он является одной из важнейших характеристик жидких коллоидных систем. Его значение и характер изменения при варьировании параметров электролита, адсорбции на пов-сти разл. в-в и т. п. позволяет судить о структуре граничных слоев, особенностях взаимод. компонентов р-ра с пов-стью, заряде пов-сти и т.д. Кроме того, выражение (1) для скорости электроосмотич. скольжения справедливо для капилляров произвольной геометрии при условии, что толщина ДЭС мала в сравнении с радиусом капилляра.
В капиллярнопористых телах, мембранах, горных породах, почвах и др. связнодисперсных системах, характеризующихся твердым каркасом и системой открытых пор, заполненных р-ром электролита, граничные слои жидкости с измененными св-вами составляют значит. долю от объемной фазы. В этих условиях Э. я. тесно связано с адсорбцией ионов, для отражения этой связи часто пользуются термином "электроповерхностные явления".
Э. я., обратное электроосмосу,- возникновение потенциала течения - удобно рассмотреть на примере проницаемой мембраны, разделяющей резервуары с электролитом. При наложении перепада давленияhttps://www.medpulse.ru/image/encyclopedia/2/4/3/18243.jpeg и течения жидкости под действием этого перепада с расходом V появляется электрич. ток через мембрану. Природа этого тока - увлечение ионов подвижной части ДЭС. Поскольку в диффузной части ДЭС имеется избыток ионов одного знака, возникает конвективный перенос заряда по порам мембраны, т. е. через мембрану течет ток. Если к резервуарам, разделенным мембраной, не подводятся электрич. заряды, то по одну сторону мембраны будут накапливаться положит, заряды, а по другую - отрицательные. Накопление зарядов в резервуарах приводит к появлению разности потенциалов между ними и протеканию электрич. тока I во всем объеме электролита в порах мембраны; направление тока противоположно конвективному переносу зарядов. Накопление зарядов в резервуарах и увеличение разности потенциалов между ними будет происходить до тех пор, пока не произойдет полной компенсации конвективного тока. Этому стационарному состоянию отвечает разность потенциаловhttps://www.medpulse.ru/image/encyclopedia/2/4/4/18244.jpeg к-рая наз. потенциалом течения.
Электроосмос и электрич. ток через мембрану (возникновение потенциала течения) - перекрестные явления, связанные феноменологич. ур-ниями в рамках термодинамики необратимых процессов. Расход V и ток I связаны с перепадом давленияhttps://www.medpulse.ru/image/encyclopedia/2/4/5/18245.jpeg и электростатич. потенциаломhttps://www.medpulse.ru/image/encyclopedia/2/4/6/18246.jpeg на торцах мембраны ур-ниями:

https://www.medpulse.ru/image/encyclopedia/2/4/7/18247.jpeg

где кинетич. коэф. L11, L12, L2l и L22 характеризуют соотв. гидродинамич. проницаемость мембраны, скорость электроосмотич. течения, ток течения и уд. электропроводность электролита в мембране. Кинетич. коэффициенты удовлетворяют соотношению Онсагера: L12 = L2l. Ур-ния (3) и соотношения Онсагера устанавливают простую связь между электроосмосом и потенциалом течения:

https://www.medpulse.ru/image/encyclopedia/2/4/8/18248.jpeg

Отношениеhttps://www.medpulse.ru/image/encyclopedia/2/4/9/18249.jpeg носит назв. электроосмотич. переноса. Оно является одной из осн. характеристик разделит. мембран (см. Мембранные процессы разделения). В случае тонких ДЭС это отношение м. б. легко рассчитано для мембран с произвольной геометрией пор. На основе подобия распределений электрич. полей и скоростей электроосмотич. течения установлено след. соотношение:

https://www.medpulse.ru/image/encyclopedia/2/5/0/18250.jpeg

гдеhttps://www.medpulse.ru/image/encyclopedia/2/5/1/18251.jpeg- уд. электрич. проводимость электролита.
Электрофоретич. движение частиц в электролите имеет родственную электроосмосу природу: внеш. электрич. поле увлекает ионы подвижной части ДЭС, заставляя слои жидкости, граничащие с частицами, перемещаться относительно пов-сти частиц. Однако в силу массивности объема жидкости и малости взвешенных частиц эти перемещения сводятся в отсутствие внеш. сил к движению частицы в покоящейся жидкости. Для непроводящих частиц с плоской пов-стью в системах с тонкой диффузной частью ДЭС скорость электрофореза совпадает со скоростью электроосмотич. скольжения, взятой с обратным знаком. Для проводящих сферич. частиц скорость электрофореза м. б. рассчитана по ур-нию:

https://www.medpulse.ru/image/encyclopedia/2/5/2/18252.jpeg

гдеhttps://www.medpulse.ru/image/encyclopedia/2/5/3/18253.jpeg- уд. электрич. проводимость частицы. В этом ур-нии учитываются особенности искажения силовых линий электростатич. поля в окрестности проводящей частицы. С увеличением толщины диффузной части ДЭС скорость электрофореза начинает зависеть от отношения дебаевского радиуса к диаметру частицы. В общем случае эта зависимость имеет довольно сложный характер.
Эффект Дорна связан с конвективным переносом ионов диффузной части ДЭС при движении частицы в электролите. Конвективные потоки ионов поляризуют двойной слой, и частицы в целом приобретают дипольный момент. При этом силовые линии электрич. поля выходят за пределы двойного слоя. При движении в электролите ансамбля частиц с диполь-ными моментами, имеющими одну и ту же ориентацию, порождаемые этими моментами электрич. поля складываются и в системе возникает однородное электрич. поле, направленное параллельно (или антипараллельно) скорости движения частиц (группу движущихся с одинаковой скоростью частиц можно рассматривать как своеобразную мембрану, сквозь к-рую протекает электролит). Если частицы движутся в пространстве между двумя электродами, то на последних возникает разность потенциалов, к-рая м. б. измерена. В частном случае осаждения ансамбля частиц под действием сил гравитации эта разность потенциалов наз. потенциалом оседания (седиментац. потенциалом).
Электрофорез и эффект Дорна м. б. описаны парой феноменологич. ур-ний неравновесной термодинамики с кинетич. коэф. l11, l12, l21 и l22:

https://www.medpulse.ru/image/encyclopedia/2/5/4/18254.jpeg

где v - скорость движения частицы; F - действующая на нее сила; Е - напряженность внеш. электрич. поля; М - индуцированный на частице дипольный момент. Кинетич. коэф., определяющие скорость электрофореза и дипольный момент в эффекте Дорна, удовлетворяют соотношению Онсагера:

l12 =l21.

Исторический очерк. Электроосмос и электрофорез были открыты Ф. Ф. Рейссом в 1809, к-рый наблюдал вызванное внеш. электрич. полем перемещение жидкости в U-образной трубке, перегороженной в ниж. части мембраной из кварцевого песка, и движение глинистых частиц в покоящейся жидкости при наложении электрич. поля. Г. Видеман установил (1852), что скорость электроосмотич. течения пропорциональна силе тока и отношениеhttps://www.medpulse.ru/image/encyclopedia/2/5/5/18255.jpeg не зависит от площади сечения и толщины мембраны.
В 1859 Г. Квинке предположил, что должно иметь место явление, обратное электроосмосу, и наблюдал возникновение потенциала течения на мембранах разл. природы, а в 1880 Э. Дорн обнаружил возникновение разности потенциалов в трубке, заполненной водой, при центрифугировании в ней суспензии кварца.
Разл. аспекты теории Э. я. были предложены Г. Гельмгольцем (1879) для простейшей модели ДЭС как мол. конденсатора, затем М. Смолуховским (1906) для случая протяженного ДЭС. Именно Смолуховский вывел ф-лу для расчета скорости электрофореза и дал количеств, теорию седиментационного потенциала. Ему же удалось выяснить сущность отличия термодинамич.https://www.medpulse.ru/image/encyclopedia/2/5/6/18256.jpeg-потенциала (см. Межфазные скачки потенциала)от электрокинетич.https://www.medpulse.ru/image/encyclopedia/2/5/7/18257.jpeg-потенциала.
В разное время были предложены теор. расчеты скорости электрофореза для частиц, размеры к-рых меньше толщины ДЭС (Э. Хюккель, 1924), для проводящих частиц произвольного размера (Д. Генри, 1931), с учетом поляризации ДЭС внеш. полем (М. Овербек, 1943). Применение методов термодинамики неравновесных явлений к изучению Э.я. развили Б. В. Дерягин и С. С. Духин (1966).

Практическое применение. Электроосмос используют для обезвоживания пористых тел - при осушке стен зданий, сыпучих материалов и т. п., а также для пропитки материалов. Все шире применяют электроосмотич. фильтрование, сочетающее фильтрование под действием приложенного давления и электроосмотич. перенос жидкости в электрич. поле. Использование электрофореза связано с нанесением покрытий на детали сложной конфигурации, для покрытия катодов электроламп, полупроводниковых деталей, нагревателей и т. п. Этот метод применяется также для фракционирования полимеров, минеральных дисперсий, для извлечения белков, нуклеиновых к-т. Лекарств, электрофорез - метод введения в организм через кожу или слизистые оболочки разл. лек. средств. Эффект возникновения потенциала течения используется для преобразования мех. энергии в электрическую в датчиках давления.

Лит.: Кройт Г., Наука о коллоидах, пер. с англ., М., 1955; Духин С. С., Дерягин Б.В., Электрофорез, М., 1976; Ньюмен Дж., Электрохимические системы, пер. с англ., М., 1977.

В. И. Ролдугин.


2-этилгексанол Эбониты Эбулиоскопия Эвгенол Эвтектика Эдмана деградация Эженаль Эйкозаноиды Эйнштейний Экваториальное положение Эквивалент химический Экдизоны Эксергетйческий анализ Эксимеры Эксиплексы Экспресс-тесты Экспрессия гена Экстенсивные параметры Экстрагирование Экстракционная хроматография Экструзия полимеров Элаидиновая кислота Эластомеры Электретно-термический анализ Электреты Электрогравиметрия Электродиализ Электродные процессы Электродный потенциал Электроды Электроды сравнения Электроизоляционные масла Электрокапиллярные явления Электрокатализ Электрокинетические явления Электрокристаллизация Электролиз Электролитическая диссоциация Электролиты Электролиты неводные Электролиты твёрдые Электрометаллургия Электромиграционные методы Электрон Электронная корреляция Электронная микроскопия Электронная плотность Электронно-колебательное взаимодействие Электронные спектры Электронный парамагнитный резонанс Электронография Электроосаждение Электроосмос Электроотрицательность Электроперенос Электроповерхностные явления Электропроводность электролитов Электрорафинирование Электросинтез Электрофильные реакции Электрофорез Электрофотография Электрохимическая кинетика Электрохимическая обработка металлов Электрохимические сенсоры Электрохимические цепи Электрохимический импеданс Электрохимический потенциал Электрохимический ряд напряжений Электрохимический синтез Электрохимический эквивалент Электрохимия Электрохимия полупроводников Электрохимия расплавов Электроциклические реакции Электроэкстракция Элемент 106 Элемент 107 Элемент 108 Элемент 109 Элементарные частицы Элементный анализ Элементоорганические полимеры Элементоорганические соединения Элементы химические Эленол Эллипсометрия Эллмана реактив Эльбса реакции Эльтекова правило Эмали Эманационный метод Эмде расщепление Эметин Эмиссионный спектральный анализ Эмульсии Эмульсионная полимеризация Эмульсионные краски Эмульсолы Эмультал Энантиомеры Энантиоморфизм Энантиотопия Эндо Эндодезоксирибонуклеазы Эндорфины Энергия активации Энкефалины Энолаза Энтальпия образования Энтальпия реакции Энтеросептол Энтропия Энтропия активации Эозин Эпи... Эпимеризация Эпимеры Эписома Эпитаксия Эпихлоргидрин Эпихлоргидриновые каучуки Эпоксидирование Эпоксидное число Эпоксидные каучуки Эпоксидные клеи Эпоксидные лаки Эпоксидные смолы Эрбий Эргоалкалоиды Эрготамин Эритриновые алкалоиды Эритроизомеры Эрлиха реакция Эстрогены Этамбутол Этаминал-натрий Этан Этанол Этаноламиды жирных кислот Этаноламины Этара реакция Этерификация Этилакрилат Этиламины Этилацетат Этилбензол Этилен Этилен-пропиленовые каучуки Этилена сополимеры Этиленгликоль Этилендиамин Этилендиаминтетрауксусная кислота Этилендинитрамин Этиленимин Этиленкарбонат Этиленовые углеводороды Этиленоксид Этиленсульфид Этиленхлоргидрин Этиловая жидкость Этиловый спирт Этиловый эфир Этилсиликаты Этилхлорид Этилцеллюлоза Этилцеллюлозные лаки Этинилирование Этмозин Этролы Эфедрин Эфирное число Эфирные масла Эфироцеллюлозные лаки Эфиры простые Эфиры сложные Эффективный заряд атома Эшвайлера-кларка реакция