Словарь научных терминов
Турбулентная диффузия

ТУРБУЛЕНТНАЯ ДИФФУЗИЯ, перенос в-ва в пространстве, обусловленный турбулентным движением среды. Под турбулентным понимают вихревое движение жидкости или газа, при к-ром элементы (частицы) среды совершают неупорядоченные, хаотич. движения по сложным траекториям, а скорость, т-ра, давление и плотность среды испытывают хаотич. флуктуации.

Если в турбулентном потоке в определенный момент времени множество элементов (частиц) расположено рядом один с другим, то в послед, моменты времени они рассеиваются по пространству так, что статистич. расстояние между любыми двумя произвольными частицами с течением времени возрастает. Проявления этого процесса во многом напоминают мол. диффузию.

В основе описания T. д. как процесса случайного блуждания частиц среды лежат выражения для среднеквадратичного смешения частицhttp://www.medpulse.ru/image/encyclopedia/7/9/4/14794.jpegот нек-рого исходного положения через интервал времени t, сходные с выражениями для мол. диффузии. В случае больших времен процесса рассеяния, когда м. б. использован закон Фика, справедливо равенство:

http://www.medpulse.ru/image/encyclopedia/7/9/5/14795.jpeg

где http://www.medpulse.ru/image/encyclopedia/7/9/6/14796.jpeg - лагранжев временной масштаб (с) в направлении переноса; параметр Dt=v2T- коэффициент T. д. (мат. выражение и физ. смысл см. ниже). Лагранжев коэф. корреляции между пульсациями скорости v (м/с) одного и того же элемента (частицы) среды в разные моменты времени t и t + http://www.medpulse.ru/image/encyclopedia/7/9/7/14797.jpegсоставляет:

http://www.medpulse.ru/image/encyclopedia/7/9/8/14798.jpeg

Поскольку T. д. и мол. диффузия независимы, общее смещение частицы будет определяться суммой:

http://www.medpulse.ru/image/encyclopedia/7/9/9/14799.jpeg

а общий (виртуальный) коэф. диффузии Dt = D1. + D, где D -коэф. мол. диффузии. Хаотич. пульсац. движение жидкости (газа), обусловливающее турбулентный поток в-ва, возникает при высоких числах Рейнольдса (см. Подобия теория). Наличие градиентов осредненной скорости течения (см. ниже) приводит к заметному ускорению рассеяния частиц в-ва по направлению турбулентного потока. Его плотность выражают в виде вектора:

http://www.medpulse.ru/image/encyclopedia/8/0/0/14800.jpeg

где u', с' - пульсац. составляющие соотв. вектора скорости движения среды и концентрации переносимого в-ва; < > -оператор осреднения ф-ции по времени в рассматриваемой точке пространства.

Т.д. протекает по-разному в зависимости от масштаба турбулентности. Перенос в-ва при маломасштабной турбулентности описывают по аналогии с мол. диффузией. При крупномасштабной турбулентности среднее квадратичное смещение частиц с течением времени быстро увеличивается, причем этот рост обусловлен преим. крупными вихрями.

Предполагают, что турбулентный перенос в-ва в рассматриваемый момент времени в произвольной точке пространства определяется градиентом осредненной концентрации, взятым в той же точке пространства и в тот же момент времени (гипотеза Буссинеска). Так, плотность турбулентного потока массы в направлении к.-л. из осей координат, напр. *, выражают в виде:

http://www.medpulse.ru/image/encyclopedia/8/0/1/14801.jpeg

где < с > - средняя по времени концентрация переносимого в-ва в рассматриваемой точке пространства; знак "минус" указывает на уменьшение концентрации в направлении переноса.

Ур-ние (4) служит по существу определением коэф. пропорциональности Dт. Этот параметр связывает поток массы при турбулентном режиме течения среды с градиентом осредненной скорости движения. В настоящее время Dт. не м. б. определен чисто теоретич. путем.

Используя соотношения, аналогичные законам вязкости Ньютона и теплопроводности Фурье (см. Переноса процессы), вводят коэф. турбулентной кинематич. вязкости vт и турбулентной температуропроводности ат2/с). Последние в отличие от выраженных в тех же единицах измерения коэф. мол. диффузии D, температуропроводности а и кинематич. вязкости v не являются физ.-хим. характеристиками и зависят от параметров осредненного движения среды, а также от положения рассматриваемого элемента ее объема в потоке.

Механизм турбулентного перемешивания в осн. одинаков для внутр. трения, тепло- и массопроводности. Различие состоит лишь в особых св-вах переносимой пульсац. течением субстанции: импульса (кол-ва движения), в-ва или теплоты. Согласно аналогии Рейнольдса, коэффициенты Т.д., кинематич. вязкости и температуропроводности равны друг другу: Dт = Vт=ат.. По аналогии с числами Прандтля (Pr = v/aШмидта (Sc = v/D) для мол. диффузии вводят понятие о соответствующих коэф. турбулентного переноса:

http://www.medpulse.ru/image/encyclopedia/8/0/2/14802.jpeg

При турбулентном переносе вблизи твердых пов-стей величины Prт и Scт, на основании эксперим. данных, несколько отличаются от единицы и обычно находятся в пределах 0,5-1,0. Сказанное свидетельствует о том, что мн. сведения относительно DT B-B (или ат)в первом приближении можно заимствовать из имеющейся в справочной литературе информации о Vт.

Турбулентный перенос в-ва вдали от пов-стей, ограничивающих область движения потока, во много раз превышает мол. перенос (поэтому перемешивание среды часто осуществляют при турбулентном режиме течения). Так, для газов коэф. диффузии Dhttp://www.medpulse.ru/image/encyclopedia/8/0/3/14803.jpeg10-5 м2/с, а средний Dт при движении потока, напр, в трубах, находится в пределах 10-4-10-2 м2/с. Значения соотношения D/Dт остаются небольшими, напр.: при течении жидкостей составляют 10-6-10-4. Однако вблизи границы раздела фаз турбулентность затухает , и мол. диффузия становится преобладающей.

http://www.medpulse.ru/image/encyclopedia/8/0/4/14804.jpeg

В общем случае выражение для плотности диффузионного потока в бинарной жидкой или газовой смеси с учетом мол. и турбулентного механизмов переноса записывают в виде:

http://www.medpulse.ru/image/encyclopedia/8/0/5/14805.jpeg

где V - набла-оператор (Гамильтона оператор).

Знание закономерностей Т.д. необходимо при описании хим.-технол. процессов, протекающих в потоках жидкости или газа, в т. ч. в дисперсных средах. T. д. оказывает влияние на структуру потоков в аппаратах и вносит свой вклад в продольное и поперечное перемешивание в-ва. Чаще всего продольное перемешивание снижает движущую силу массо-обменных процессов и ухудшает их показатели.

Лит.: Mонин А. С., Яглом А. Я., Статистическая гидромеханика, ч. 1-2, M., 1967; Берд Р., Стыоарт В., Л айтфут E., Явления переноса, пер. с англ., M., 1974; Рейнольде А.Дж., Турбулентные течения в инженерных приложениях, M., 1979. В. В. Дильман.



(+)-тубокурарин 2-теноилтрифторацетон Таблетирование Табун Тайрон Таллийорганические соединения Талловое масло Тальк Таннины Тантал Тантала галогениды Тантала оксиды Тантала сплавы Танталаты Танталорганические соединения Тарельчатые аппараты Тартраты Тауриды Таутомерия Тафеля уравнение Тафта уравнение Твердое тело Твердость Твердофазная полимеризация Твердофазный синтез Твердые горючие ископаемые Твердые растворы Твердые смазки Твердые сплавы Тейхоевые кислоты Текстолиты Текстурированные нити Текучести температура Теле-замещение Теллур Теллура оксиды. Теллуриды Теллурорганические соединения Теллурофен Теломеризация Температура Темплатный синтез Тензиметрия Теобромин Теофиллин Тепловая теорема Тепловой эффект реакции Теплоемкость Теплоизоляционные материалы Теплообмен Теплопроводность Теплостойкость Теплота образования Теплота сгорания Тер-мейлена метод Тербий Терефталевая кислота Терефталоилхлорид Термит Термический анализ Термический крекинг Термогравиметрия Термография Термодеполяризационный анализ Термодинамика Термодинамические потенциалы Термодинамическое равновесие Термодиффузионное разделение Термолиз Термолизин Термолюминесценция Термометрия Термометры Термопласты Термореактивные пластмассы Термостойкие волокна Термостойкие полимеры Термостойкость Термофорез Термохимия Термоэластопласты Терпеновые смолы Терпеновые спирты Терпены Терпинены Терпинеолы Терфенилы Тестостерон Тетрагидрофолатдегидрогеназа Тетрагидрофуран Тетразен Тетразол Тетралин Тетраметилолфосфонийхлорид Тетранитрометан Тетранитропентаэритрит Тетрафторэтилен Тетрахлорбензолы Тетрахлорэтаны Тетрахлорэтилен Тетрацианохинодиметан Тетрацианоэтилен Тетрациклины Тетраэтилсвинец Тетраэтоксисилан Тетрил Тетроники Тетурам Технеций Техника безопасности Технические жидкости Технический углерод Тиазиновые красители Тиазол Тиамин Тиенотиофены Тиепин Тиетан Тиильные радикалы Тиираны Тиксотропия Тиле-винтера реакция Тимидин Тимин Тимол Тиоацетамид Тиогликолевая кислота Тиодигликоль Тиозоли Тиоиндиго Тиоиндигоидные красители Тиокарбаминовые кислоты Тиокарбонильные соединения Тиокарбоновые кислоты Тиоколы Тиолы Тиомочевина Тион-тиольная перегруппировка Тионилгалогениды Тиопентал-натрий Тиопираны Тиопирилия соли Тиосалициловая кислота Тиосемикарбазиды Тиосемикарбазоны Тиосерная кислота Тиоспирты Тиосульфаты неорганические Тиосульфокислоты Тиоугольные кислоты Тиофен Тиофенол Тиофенолы Тиоформальдегид Тиофосфаты неорганические Тиофосфаты органические Тиохолин Тиоцианаты неорганические Тиоцианаты органические Тиоэфиры Типов теория Тиреотропный гормон Тирозин Тироксин Тиролиберин Титан Титана галогениды Титана карбид Титана нитрид Титана оксиды Титана сплавы Титана сульфаты Титана хлориды Титанаты Титанорганические соединения Титр Титраторы Титриметрия Тиурамы Тиффено реакция Тищенко реакция Тодда-атертона реакция Тозилаты Ток обмена Токолитические средства Токоферолы Токсины Токсичность Толан Толленса реактив Толуидины Толуилендиамины Толуилендиизоцианаты Толуиловые альдегиды Толуиловые кислоты Толуол Толуолсульфамиды Толуолсульфокислоты Толуолсульфонат Толуолсульфохлориды Тонкие пленки Тонкослойная хроматография Топлива Топливные элементы Топные отношения Топоизомеразы Топология Топомеризация Топохимические реакции Торий Торпа-циглера реакция Торф Тошлирование Травление Транквилизаторы Трансаминирование Трансаннулярные реакции Трансгидрогеназа Транскетолаза Транскрипция Трансляция Трансмиссионные масла Транспозоны Трансферазы Трансформация Трассирующие составы Трассёра метод Трение Треоизомеры Треонин Третье начало термодинамики Трехмерные полимеры Триазины Триазолы Триаминотринитробензол Триарилметильные радикалы Триацетатные волокна Триацетонамин Трибохимия Трибутилфосфат Триизобутилалюминий Трииодтиронин Тримезиновая кислота Тримекаин Тримеллитовая кислота Триметиламин Триметилолфосфин Триметилолфосфиноксид Триметилфосфит Тримолекулирные реакции Тринитробензол Тринитроксилол Тринитрорезорцин Тринитротолуол Тринитрофенол Триозофосфатиомераза Триоксан Триоксибензолы Триорганоарсины Трипсин Триптофан Триптофана3а Тритий Трифенилкарбинол Трифенилметан Трифенилметановые красители Трифенилфосфат Трифенилфосфин Трифенилфосфит Трифенилхлорметан Трифторацетиллцетон Трифторнадуксусная кислота Трифторнитрозометан Трифторуксусная кислота Трихлорбензолы Трихлорэтаны Трихлорэтилён Трихомонацид Триэтаноламин Триэтилалюминий Триэтиламин Триэтиленгликоль Тройная связь Тройная точка Тромбин Тропановые алкалоиды Тропафен Тропацин Тропеолины Тропилия соединения Трополоны Трудногорючие волокна Тулий Туманоулавливание Туннельный эффект Турбидиметрия Турбинные масла Турбулентная диффузия Тяжёлая вода