Словарь научных терминов
Теплоемкость

ТЕПЛОЕМКОСТЬ, кол-во теплоты, затрачиваемое для изменения т-ры на 1 °С. Согласно более строгому определению, Т.-термодинамич. величина, определяемая выражением:

http://www.medpulse.ru/image/encyclopedia/8/9/3/13893.jpeg

где DQ- кол-во теплоты, сообщенное системе и вызвавшее изменение ее т-ры на DТ. Отношение конечных разностей DQ/DТ наз. средней Т., отношение бесконечно малых величин dQ/dT-истинной Т. Поскольку dQ не является полным дифференциалом ф-ции состояния, то и Т. зависит от пути перехода между двумя состояниями системы. Различают Т. системы в целом (Дж/К), удельную Т. [Дж/(г·К)], молярную Т. [Дж/(моль·К)]. Во всех ниже приведенных ф-лах использованы молярные величины Т.

Из второго начала термодинамики следует, что Т. пропорциональна производной от энтропии системы S по т-ре Т при постоянстве внеш. силы или термодинамич. координаты (обозначается индексом z):

http://www.medpulse.ru/image/encyclopedia/8/9/4/13894.jpeg

Наиб. важными видами Т. являются Т. CV при постоянном объеме V и Т. Ср при постоянном давлении р:

СV = (9U/9T)V = T(9S/9T)V, Ср = (9Н/9Т)р = Т(9S/9Т)р,

где U-внутр. энергия, H-энтальпия системы. Значения Ср и СV связаны соотношением:

http://www.medpulse.ru/image/encyclopedia/8/9/5/13895.jpeg

где a = V-1(9V/9Т)р-коэф. термич. расширения, x = = — V-1(9V/9р)T-коэф. изотермич. сжимаемости. Поскольку по условиям устойчивости фаз Ср, CV > 0 и (9V/9р)T < 0, то согласно (3) Ср > CV. Это естественно, т. к. при изобарич. нагревании часть тепла, помимо увеличения внутр. энергии системы, идет на работу расширения. Для идеальных газов (9U/9V)T = 0 и учет ур-ния состояния pV= RT приводит к соотношению: Сp - CV = R (R-газовая постоянная). Из определений (1) и (2) следует, что для изотермич. процесса С = ,, для адиабатич. процесса С = 0.

Т. газов. Вычисление Т. сводится к вычислению средней энергии теплового движения отдельных молекул, к-рое складывается из поступат. и вращат. движений молекулы как целого и из колебаний атомов внутри молекулы. Молярная Т. одноатомного газа равна 3R/2 (по R/2 на каждую степень поступат. движения молекулы). Т. многоатомного газа в общем случае м. б. представлена суммой вкладов от отдельных видов движения-поступательного, вращательного, колебательного.

Поступательная Т. рассчитывается так же, как для одноатомного газа. Вращательная и в особенности колебательная Т. должны, как правило, вычисляться на основе квантовой статистики. Согласно классич. статистике, вклады в молярную Т. в расчете на одну степень свободы равны: для вращат. движения R/2, для колебат. движения R. Для большинства молекул при низких и средних т-рах колебат. степени свободы вырождены и не дают вклада в Т. Напр., Т. двухатомного газа при обычных т-рах равна 5R/2. Лишь при достаточно высоких т-рах возбуждаются колебания определенной частоты.

Т. твердых тел. При низких т-рах Т. одноатомных кристаллов пропорциональна кубу абс. т-ры (закон Дебая): СV ! Т3. При высоких т-рах СV стремится к предельному значению 3R, определяемому классич. теорией и не зависящему от природы атомов (правило Дюлонга и Пти). Значение 3R может, однако, не достигаться, если ранее происходит плавление в-ва или его разложение. Методами квантовой статистики доказывается равенство нулю Т. любого тела при абс. нуле т-ры (CV : 0 при Т : 0). Если бы это было не так, энтропия системы, согласно (2), должна была бы обращаться в — , при T : 0, что противоречит третьему началу термодинамики (см. Тепловая теорема). Предельное значение СV = 3R достигается уже при обычных т-рах у металлов. Для нек-рых простых соед. с числом атомов в молекуле n предельное значение CV = 3nR [NaCl, MnS (n = = 2), РbСl2(n = 3) и др.].

Для кристаллич. твердых тел существует характеристич. т-ра qD, названная т-рой Дебая, разделяющая "классич. область" т-р Тhttp://www.medpulse.ru/image/encyclopedia/8/9/6/13896.jpegqD, в к-рой Т. описывается законом Дюлонга и Пти, и "квантовую область" Thttp://www.medpulse.ru/image/encyclopedia/8/9/7/13897.jpegqD. Т-ра Дебая связана с предельной частотой колебаний атомов в кристал-лич. решетке и зависит от упругих постоянных в-ва (см. табл.).

http://www.medpulse.ru/image/encyclopedia/8/9/8/13898.jpeg

У металлов вклад в значение СV дают электроны проводимости (электронная Т.). Эта часть Т. может быть вычислена на основе квантовой статистики Ферми, к-рой подчиняются электроны. Электронная Т. пропорциональна т-ре в первой степени, однако ее вклад пренебрежимо мал при т-рах, когда велика "решеточная" Т. (пропорциональная T3). Антиферромагнетики и ферримагнетики, обладающие упорядоченным расположением спиновых магн. моментов атомов, имеют дополнит. магн. составляющую Т., к-рая испытывает резкий подъем при т-ре фазового перехода в-ва в парамагнитное состояние (см. Кюри точка).

Методы определения Т. индивидуальных веществ. Осн. эксперим. методом является калориметрия. Теоретич. расчет Т. в-в осуществляется методами статистической термодинамики, но он возможен только для сравнительно простых молекул в состоянии идеального газа и для кристаллов, причем в обоих случаях для расчета требуются эксперим. данные о строении в-ва.

Эмпирич. методы определения Т. в-в в состоянии идеального газа основаны на представлении об аддитивности вкладов отдельных групп атомов или хим. связей. Опубликованы обширные таблицы групповых атомных вкладов в значение Ср. Для жидкостей, помимо аддитивно-групповых, применяют методы, основанные на соответственных состояний законе, а также на использовании термодинамич. циклов, позволяющих перейти к Т. жидкости от Т. идеального газа через температурную производную энтальпии испарения.

Для р-ра вычисление Т. как аддитивной ф-ции Т. компонентов в общем случае некорректно, т.к. избыточная Т. р-ра, как правило, значительна. Для ее оценки требуется привлечение молекулярно-статистич. теории р-ров (см. Растворы неэлектролитов). Экспериментально избыточная Т. может быть определена по температурной зависимости энтальпии смешения, после чего возможен расчет Ср р-ра.

Т. гетерог. систем представляет наиб. сложный случай для термодинамич. анализа. На диаграмме состояния перемещение вдоль кривой равновесия фаз сопровождается изменением и р, и Т. Если в процессе нагрева происходит смещение точки фазового равновесия, то это дает дополнит. вклад в Т., поэтому Т. гетерог. системы не равна сумме Т. составляющих ее фаз, но превосходит ее. На фазовой диаграмме при переходе от гомог. состояния к области существования гетерог. системы Т. испытывает скачок (см. Фазовые переходы).

Практическое значение исследований Т. важно для расчетов энергетич. балансов процессов в хим. реакторах и др. аппаратах хим. произ-ва, а также для выбора оптим. теплоносителей. Эксперим. измерение Т. для разных интервалов т-р-от предельно низких до высоких-является осн. методом определения термодинамич. св-в в-в. Для расчета энтальпий и энтропии в-ва (в интервалах от 0 до Г) используют интегралы от Т.:

http://www.medpulse.ru/image/encyclopedia/8/9/9/13899.jpeg

к к-рым добавляютсясоответствующие эффекты фазовых переходов. Знание Т. реагентов в нек-ром интервале т-р позволяет осуществить расчет теплового эффекта р-ции (см. Кирхгофа уравнение), а знание Т. р-ров-рассчитать их термодинамич. св-ва при любой т-ре в пределах исследованного интервала.

Особо следует подчеркнуть роль Т. в структурных исследованиях индивидуальных в-в в конденсир. состоянии и р-ров. Величины, являющиеся второй производной потенциалов Гиббса или Гельмгольца по параметрам состояния (а Т. относится к таковым), весьма чувствительны к структурным изменениям системы. В твердых телах и сплавах при фазовых переходах 2-го рода типа порядок - беспорядок наблюдаются l-образные скачки Т. В жидкостях такие скачки имеют место вблизи критич. точек равновесия жидкость-газ и жидкость-жидкость (см. Критические явления). В жидкости, напр., при нагр. часть энергии может идти не на возбуждение новых степеней свободы молекул, а на изменение потенц. энергии взаимодействующих молекул. Этот вклад наз. "конфигурационной" Т.; она связана с характером мол. упорядочения в жидкостях и р-рах. В биохимии политермич. измерения Т. дают информацию о структурных переходах в белках.

Лит.: Рид Р., Праусниц Дж., Шервуд Т., Свойства газов и жидкостей, пер. с англ., 3 изд., Л., 1982; Шульц М. М., Филиппов В. К., "Ж. Весе. хим. об-ва им. Д.И. Менделеева", 1982, т. 27, с. 485-94; Панов М.Ю., Белоусов В. П., в сб.: Химия и термодинамика растворов, в. 5, Л., 1982, с. 56-87; Термодинамические свойства индивидуальных веществ, под ред. В. П. Глушко, 3 изд., т. 1-4, М., 1978-82; Experimental thermodynamics, ed. by J. P. McCullough, D. W. Scott, v. 1, N. Y. - L., 1968. M. Ю. Панов.


(+)-тубокурарин 2-теноилтрифторацетон Таблетирование Табун Тайрон Таллийорганические соединения Талловое масло Тальк Таннины Тантал Тантала галогениды Тантала оксиды Тантала сплавы Танталаты Танталорганические соединения Тарельчатые аппараты Тартраты Тауриды Таутомерия Тафеля уравнение Тафта уравнение Твердое тело Твердость Твердофазная полимеризация Твердофазный синтез Твердые горючие ископаемые Твердые растворы Твердые смазки Твердые сплавы Тейхоевые кислоты Текстолиты Текстурированные нити Текучести температура Теле-замещение Теллур Теллура оксиды. Теллуриды Теллурорганические соединения Теллурофен Теломеризация Температура Темплатный синтез Тензиметрия Теобромин Теофиллин Тепловая теорема Тепловой эффект реакции Теплоемкость Теплоизоляционные материалы Теплообмен Теплопроводность Теплостойкость Теплота образования Теплота сгорания Тер-мейлена метод Тербий Терефталевая кислота Терефталоилхлорид Термит Термический анализ Термический крекинг Термогравиметрия Термография Термодеполяризационный анализ Термодинамика Термодинамические потенциалы Термодинамическое равновесие Термодиффузионное разделение Термолиз Термолизин Термолюминесценция Термометрия Термометры Термопласты Термореактивные пластмассы Термостойкие волокна Термостойкие полимеры Термостойкость Термофорез Термохимия Термоэластопласты Терпеновые смолы Терпеновые спирты Терпены Терпинены Терпинеолы Терфенилы Тестостерон Тетрагидрофолатдегидрогеназа Тетрагидрофуран Тетразен Тетразол Тетралин Тетраметилолфосфонийхлорид Тетранитрометан Тетранитропентаэритрит Тетрафторэтилен Тетрахлорбензолы Тетрахлорэтаны Тетрахлорэтилен Тетрацианохинодиметан Тетрацианоэтилен Тетрациклины Тетраэтилсвинец Тетраэтоксисилан Тетрил Тетроники Тетурам Технеций Техника безопасности Технические жидкости Технический углерод Тиазиновые красители Тиазол Тиамин Тиенотиофены Тиепин Тиетан Тиильные радикалы Тиираны Тиксотропия Тиле-винтера реакция Тимидин Тимин Тимол Тиоацетамид Тиогликолевая кислота Тиодигликоль Тиозоли Тиоиндиго Тиоиндигоидные красители Тиокарбаминовые кислоты Тиокарбонильные соединения Тиокарбоновые кислоты Тиоколы Тиолы Тиомочевина Тион-тиольная перегруппировка Тионилгалогениды Тиопентал-натрий Тиопираны Тиопирилия соли Тиосалициловая кислота Тиосемикарбазиды Тиосемикарбазоны Тиосерная кислота Тиоспирты Тиосульфаты неорганические Тиосульфокислоты Тиоугольные кислоты Тиофен Тиофенол Тиофенолы Тиоформальдегид Тиофосфаты неорганические Тиофосфаты органические Тиохолин Тиоцианаты неорганические Тиоцианаты органические Тиоэфиры Типов теория Тиреотропный гормон Тирозин Тироксин Тиролиберин Титан Титана галогениды Титана карбид Титана нитрид Титана оксиды Титана сплавы Титана сульфаты Титана хлориды Титанаты Титанорганические соединения Титр Титраторы Титриметрия Тиурамы Тиффено реакция Тищенко реакция Тодда-атертона реакция Тозилаты Ток обмена Токолитические средства Токоферолы Токсины Токсичность Толан Толленса реактив Толуидины Толуилендиамины Толуилендиизоцианаты Толуиловые альдегиды Толуиловые кислоты Толуол Толуолсульфамиды Толуолсульфокислоты Толуолсульфонат Толуолсульфохлориды Тонкие пленки Тонкослойная хроматография Топлива Топливные элементы Топные отношения Топоизомеразы Топология Топомеризация Топохимические реакции Торий Торпа-циглера реакция Торф Тошлирование Травление Транквилизаторы Трансаминирование Трансаннулярные реакции Трансгидрогеназа Транскетолаза Транскрипция Трансляция Трансмиссионные масла Транспозоны Трансферазы Трансформация Трассирующие составы Трассёра метод Трение Треоизомеры Треонин Третье начало термодинамики Трехмерные полимеры Триазины Триазолы Триаминотринитробензол Триарилметильные радикалы Триацетатные волокна Триацетонамин Трибохимия Трибутилфосфат Триизобутилалюминий Трииодтиронин Тримезиновая кислота Тримекаин Тримеллитовая кислота Триметиламин Триметилолфосфин Триметилолфосфиноксид Триметилфосфит Тримолекулирные реакции Тринитробензол Тринитроксилол Тринитрорезорцин Тринитротолуол Тринитрофенол Триозофосфатиомераза Триоксан Триоксибензолы Триорганоарсины Трипсин Триптофан Триптофана3а Тритий Трифенилкарбинол Трифенилметан Трифенилметановые красители Трифенилфосфат Трифенилфосфин Трифенилфосфит Трифенилхлорметан Трифторацетиллцетон Трифторнадуксусная кислота Трифторнитрозометан Трифторуксусная кислота Трихлорбензолы Трихлорэтаны Трихлорэтилён Трихомонацид Триэтаноламин Триэтилалюминий Триэтиламин Триэтиленгликоль Тройная связь Тройная точка Тромбин Тропановые алкалоиды Тропафен Тропацин Тропеолины Тропилия соединения Трополоны Трудногорючие волокна Тулий Туманоулавливание Туннельный эффект Турбидиметрия Турбинные масла Турбулентная диффузия Тяжёлая вода