Словарь научных терминов
Тепловой эффект реакции

ТЕПЛОВОЙ ЭФФЕКТ РЕАКЦИИ, теплота, выделенная или поглощенная термодинамич. системой при протекании в ней хим. р-ции. Определяется при условии, что система не совершает никакой работы (кроме возможной работы расширения), а т-ры реагентов и продуктов равны. Поскольку теплота не является ф-цией состояния, т.е. при переходе между состояниями зависит от пути перехода, то в общем случае Т. э. р. не может служить характеристикой конкретной р-ции. В двух случаях бесконечно малое кол-во теплоты (элементарная теплота) dQ совпадает с полным дифференциалом ф-ции состояния: при постоянстве объема dQ = = dU (U-внутр. энергия системы), а при постоянстве давления dQ = dH (H-энтальпия системы).

Практически важны два типа Т. э. р.-изотермо-изобар-ный (при постоянных т-ре Т и давлении р) и изотермо-изо-хорный (при постоянных Т и объеме V). Различают дифференциальный и интегральный Т. э. р. Дифференциальный Т. э. р. определяется выражениями:

http://www.medpulse.ru/image/encyclopedia/8/8/0/13880.jpeg

где ui, hi-соотв. парциальные молярные внутр. энергия и энтальпия; vi-стехиометрич. коэф. (vi > 0 для продуктов, vi<0 для реагентов); x = (ni - ni0)/vi,-хим. переменная, определяющая состав системы в любой момент протекания р-ции (ni и ni0 - числа молей i-го компонента в данный момент времени и в начале хим. превращения соотв.). Размерность дифференциального Т. э. р.-кДж/моль. Если uT,V, hT,p > 0, р-ция наз. эндотермической, при обратном знаке эффекта-экзотермической. Два типа эффектов связаны соотношением:

http://www.medpulse.ru/image/encyclopedia/8/8/1/13881.jpeg

Для идеального газа (9U/9V)T,x = 0 и учет ур-ния состояния pV = RT приводит к выражению:(R - газовая постоянная). Поэтому еслиhttp://www.medpulse.ru/image/encyclopedia/8/8/2/13882.jpegгазофазная р-ция протекает с изменением числа молей, то hT,p . uT,V. Для конденсир. фаз в силу малости производной (9V/9V)T,р разность hT,p — uT,V мала и ею обычно пренебрегают. На практике обычно приходится иметь дело с изобарич. условиями (р = = const), когда Т. э. р. совпадает с изменением энтальпии системы. Поэтому вместо термина "Т. э. р." используют термин "энтальпия р-ции". Тепловые эффекты hT,p, uT,V в общем случае зависят от состава системы, т. к. величины ui, hi изменяются по мере протекания р-ции.

Интегральный Т. э. р. в расчете на один пробег р-ции (изменение числа молей в-ва равно его стехиометрич. коэффициенту) измеряется в кДж и определяется ф-лами:

http://www.medpulse.ru/image/encyclopedia/8/8/3/13883.jpeg

Если по условиям проведения р-ции hi не зависят от состава (р-ции в неплотных газах, в разб. р-рах), дифференциальный и интегральный Т. э. р. численно совпадают. В противном случае отнесение измеренного Т. э. р. DHT,p к изменению числа молей реагента или продукта дает средний Т. э. р. (кДж/моль).

Температурная зависимость Т. э. р. дается Кирхгофа уравнением, применение к-рого, строго говоря, требует знания парциальных молярных теплоемкостей всех участвующих в р-ции в-в, однако в большинстве случаев эти величины неизвестны. Поскольку для р-цик, протекающих в реальных р-рах и др. термодинамически неидеальных средах, Т. э. р., как и др. парциальные молярные величины, существенно зависят от состава системы и эксперим. условий, разработан подход, облегчающий сопоставление энергетики разных р-ций и систематику Т. э. р. Этой цели служит понятие стандартного Т. э. р. (обозначаетсяhttp://www.medpulse.ru/image/encyclopedia/8/8/4/13884.jpeg). Под стандартным понимается Т. э. р., осуществляемой (часто гипртетичес-ки) в условиях, когда все участвующие в р-ции в-ва находятся в заданных стандартных состояниях. Дифференц. и интегральный стандартные Т. э. р. всегда численно совпадают. Стандартный Т.э. р. легко рассчитать с использованием таблиц стандартных теплот образования или теплот сгорания в-в (см. ниже). Для неидеальных сред между реально измеренными и стандартными Т.э.р. существует большое расхождение, что необходимо иметь в виду при использовании Т.э.р. в тврмодинамич. расчетах. Напр., для щелочного гидролиза диацетимида [(СН3СО)2 NH (тв) + Н2О(ж) = = СН3СОКН2(тв) + СН3СООН(ж)+http://www.medpulse.ru/image/encyclopedia/8/8/5/13885.jpeg] в 0,8 н. р-ре NaOH в водном этаноле (58% по массе этанола) при 298 К измеренный Т. э. p. DH1 = — 52,3 кДж/моль. Для той же р-ции в стандартных условиях получено http://www.medpulse.ru/image/encyclopedia/8/8/6/13886.jpeg= — 18,11 кДж/моль. Столь значит. разница объясняется тепловыми эффектами, сопровождающими растворение в-в в указанном р-рителе (теплотами растворения). Для твердого ацетамида, жидкой уксусной к-ты и воды теплоты растворения равны соотв.: DH2 = 13,60; DH3 = - 48,62; DH4 = - 0,83 кДж/моль, так чтоhttp://www.medpulse.ru/image/encyclopedia/8/8/7/13887.jpeg= DH1DH2 - DH3 + DH4. Из примера видно, что при исследованиях Т.э.р. важны измерения тепловых эффектов сопутствующих физ.-хим. процессов.

Изучение Т. э. р. составляет важнейшую задачу термохимии. Осн. эксперим. метод -калориметрия. Совр. аппаратура позволяет изучать Т.э.р. в газовой, жидкой и твердой фазах, на границе раздела фаз, а также в сложных биол. системах. Диапазон типичных значений измеряемых Т.э.р. составляет от сотен Дж/моль до сотен кДж/моль. В табл. приводятся данные калориметрич. измерений Т. э. р. нек-рых р-ций. Измерение тепловых эффектов смешения, растворения, разведения, а также теплот фазовых переходов позволяет перейти от реально измеренных Т. э. р. к стандартным.

http://www.medpulse.ru/image/encyclopedia/8/8/8/13888.jpeg

Важная роль принадлежит Т.э. р. двух типов-теп лотам образования соед. из простых в-в и теплотам сгорания в-в в чистом кислороде с образованием высших оксидов элементов, из к-рых состоит в-во. Эти Т. э. р. приводятся к стандартным условиям и табулируются. С их помощью легко рассчитать любой Т. э. р.; он равен алгебраич. сумме теплот образования или теплот сгорания всех участвующих в р-ции в-в:

http://www.medpulse.ru/image/encyclopedia/8/8/9/13889.jpeg

Применение табличных величин http://www.medpulse.ru/image/encyclopedia/8/9/0/13890.jpeg позволяет вычислять тепловые эффекты мн. тысяч р-ций, хотя сами эти величины известны лишь для неск. тыс. соединений. Такой метод расчета непригоден, однако, для р-ций с небольшими тепловыми эффектами, т. к. расчетная малая величина, полученная как алгебраич. сумма неск. больших величин, характеризуется погрешностью, к-рая по абс. величине может превосходить Т.э.р. Расчет Т.э.р. с помощью величин http://www.medpulse.ru/image/encyclopedia/8/9/1/13891.jpeg основан на том, что энтальпия есть ф-ция состояния. Это позволяет составлять системы термохим. ур-ний для определения теплового эффекта требуемой р-ции (см. Гесса закон). Вычисляют практически всегда стандартные Т.э.р. Помимо рассмотренного выше метода расчет Т.э.р. проводят по температурной зависимости константы равновесия -ур-ния изобары и изохоры р-ции (см. Константа равновесия)с помощью ф-лы: http://www.medpulse.ru/image/encyclopedia/8/9/2/13892.jpeg, где DG0 = ln К-стандартная энергия Гиббса р-ции, К -константа равновесия, a DS0-стандартная энтропия р-ции, вычисляемая по стандартным энтропиям всех в-в, участвующих в р-ции.

Значение исследований Т.э.р. в химии очень велико. Знание Т. э. р. необходимо для расчетов тепловых балансов технол. процессов. Теплоты сгорания применяют при подборе оптим. топлив, расчетах уд. тяги ракетных двигателей, оценке калорийности продуктов. В практич. термодинамике Т. э. р. используют для расчета температурной зависимости констант равновесия, энтропийных эффектов хим. р-ций, при исследованиях кислотно-основных взаимодействий. Так, параметр полярности р-рителей (донорное число по Гутману), есть Т.э.р. р-рителя со стандартной льюисовской к-той SbCl5. С помощью Т. э. р. определяют энергии хим. связей, рассчитывают термодинамич. ф-ции образования молекул и ионов в конкретных состояниях. Широко применяют Т.э.р. также в корреляционных соотношениях.

Лит.: Мортимер К., Теплоты реакций и прочность связей, пер. с англ., М., 1964; Пригожин И., Дефэй Р., Химическая термодинамика, пер. с англ., Новосиб., 1966; Термические константы веществ. Справочник, под ред. В.П.Глушко, в. 1-10, 1965-82. См. также лит. при статьях Калориметрия, Термохимия. М. Ю. Панов.


(+)-тубокурарин 2-теноилтрифторацетон Таблетирование Табун Тайрон Таллийорганические соединения Талловое масло Тальк Таннины Тантал Тантала галогениды Тантала оксиды Тантала сплавы Танталаты Танталорганические соединения Тарельчатые аппараты Тартраты Тауриды Таутомерия Тафеля уравнение Тафта уравнение Твердое тело Твердость Твердофазная полимеризация Твердофазный синтез Твердые горючие ископаемые Твердые растворы Твердые смазки Твердые сплавы Тейхоевые кислоты Текстолиты Текстурированные нити Текучести температура Теле-замещение Теллур Теллура оксиды. Теллуриды Теллурорганические соединения Теллурофен Теломеризация Температура Темплатный синтез Тензиметрия Теобромин Теофиллин Тепловая теорема Тепловой эффект реакции Теплоемкость Теплоизоляционные материалы Теплообмен Теплопроводность Теплостойкость Теплота образования Теплота сгорания Тер-мейлена метод Тербий Терефталевая кислота Терефталоилхлорид Термит Термический анализ Термический крекинг Термогравиметрия Термография Термодеполяризационный анализ Термодинамика Термодинамические потенциалы Термодинамическое равновесие Термодиффузионное разделение Термолиз Термолизин Термолюминесценция Термометрия Термометры Термопласты Термореактивные пластмассы Термостойкие волокна Термостойкие полимеры Термостойкость Термофорез Термохимия Термоэластопласты Терпеновые смолы Терпеновые спирты Терпены Терпинены Терпинеолы Терфенилы Тестостерон Тетрагидрофолатдегидрогеназа Тетрагидрофуран Тетразен Тетразол Тетралин Тетраметилолфосфонийхлорид Тетранитрометан Тетранитропентаэритрит Тетрафторэтилен Тетрахлорбензолы Тетрахлорэтаны Тетрахлорэтилен Тетрацианохинодиметан Тетрацианоэтилен Тетрациклины Тетраэтилсвинец Тетраэтоксисилан Тетрил Тетроники Тетурам Технеций Техника безопасности Технические жидкости Технический углерод Тиазиновые красители Тиазол Тиамин Тиенотиофены Тиепин Тиетан Тиильные радикалы Тиираны Тиксотропия Тиле-винтера реакция Тимидин Тимин Тимол Тиоацетамид Тиогликолевая кислота Тиодигликоль Тиозоли Тиоиндиго Тиоиндигоидные красители Тиокарбаминовые кислоты Тиокарбонильные соединения Тиокарбоновые кислоты Тиоколы Тиолы Тиомочевина Тион-тиольная перегруппировка Тионилгалогениды Тиопентал-натрий Тиопираны Тиопирилия соли Тиосалициловая кислота Тиосемикарбазиды Тиосемикарбазоны Тиосерная кислота Тиоспирты Тиосульфаты неорганические Тиосульфокислоты Тиоугольные кислоты Тиофен Тиофенол Тиофенолы Тиоформальдегид Тиофосфаты неорганические Тиофосфаты органические Тиохолин Тиоцианаты неорганические Тиоцианаты органические Тиоэфиры Типов теория Тиреотропный гормон Тирозин Тироксин Тиролиберин Титан Титана галогениды Титана карбид Титана нитрид Титана оксиды Титана сплавы Титана сульфаты Титана хлориды Титанаты Титанорганические соединения Титр Титраторы Титриметрия Тиурамы Тиффено реакция Тищенко реакция Тодда-атертона реакция Тозилаты Ток обмена Токолитические средства Токоферолы Токсины Токсичность Толан Толленса реактив Толуидины Толуилендиамины Толуилендиизоцианаты Толуиловые альдегиды Толуиловые кислоты Толуол Толуолсульфамиды Толуолсульфокислоты Толуолсульфонат Толуолсульфохлориды Тонкие пленки Тонкослойная хроматография Топлива Топливные элементы Топные отношения Топоизомеразы Топология Топомеризация Топохимические реакции Торий Торпа-циглера реакция Торф Тошлирование Травление Транквилизаторы Трансаминирование Трансаннулярные реакции Трансгидрогеназа Транскетолаза Транскрипция Трансляция Трансмиссионные масла Транспозоны Трансферазы Трансформация Трассирующие составы Трассёра метод Трение Треоизомеры Треонин Третье начало термодинамики Трехмерные полимеры Триазины Триазолы Триаминотринитробензол Триарилметильные радикалы Триацетатные волокна Триацетонамин Трибохимия Трибутилфосфат Триизобутилалюминий Трииодтиронин Тримезиновая кислота Тримекаин Тримеллитовая кислота Триметиламин Триметилолфосфин Триметилолфосфиноксид Триметилфосфит Тримолекулирные реакции Тринитробензол Тринитроксилол Тринитрорезорцин Тринитротолуол Тринитрофенол Триозофосфатиомераза Триоксан Триоксибензолы Триорганоарсины Трипсин Триптофан Триптофана3а Тритий Трифенилкарбинол Трифенилметан Трифенилметановые красители Трифенилфосфат Трифенилфосфин Трифенилфосфит Трифенилхлорметан Трифторацетиллцетон Трифторнадуксусная кислота Трифторнитрозометан Трифторуксусная кислота Трихлорбензолы Трихлорэтаны Трихлорэтилён Трихомонацид Триэтаноламин Триэтилалюминий Триэтиламин Триэтиленгликоль Тройная связь Тройная точка Тромбин Тропановые алкалоиды Тропафен Тропацин Тропеолины Тропилия соединения Трополоны Трудногорючие волокна Тулий Туманоулавливание Туннельный эффект Турбидиметрия Турбинные масла Турбулентная диффузия Тяжёлая вода