Словарь научных терминов
Стереохимия

СТЕРЕОХИМИЯ (от греч. stereos-пространственный), отрасль химии, исследующая пространств. строение молекул и его влияние на физ. и хим. св-ва. Стереохим. подход применим ко всем мол. объектам, используется во всех разделах химии (орг., неорг., координац. и т. д.). С. состоит из четырех осн. разделов. Статическая, или конфигурационная, С. имеет своей главной задачей определение абс. конфигураций энантиомеров хиральных молекул (см. Конфигурация стереохимическая) и установление зависимости хироптич. св-в (см. Хироптические методы)от структуры. Конформационный анализ концентрирует внимание на "внутренней жизни" молекул в отсутствие хим. р-ций, исследует конформации молекул, их взаимопревращения и зависимость физ. и хим. св-в от конформац. характеристик. Динамическая стереохимия представляет собой составную часть совр. теории механизмов хим. р-ций, она изучает влияние пространств. строения молекул на скорости и направление р-ции, в к-рых они участвуют. Теоретическая С. имеет дело с осн. понятиями и концепциями, мат. основаниями и описанием формализма стереохим. процессов.

С. включает как теоретич. представления, так и эксперим. методы. В области теории она широко использует аппарат квантовой химии, а также таких мат. дисциплин, как теория групп, алгебра, теория графов, топология (см. Топология в химии), теория множеств. С. использует все инструментальные методы исследования; особое место занимают хироптич. методы (дисперсия оптич. вращения и круговой дихроизм и др.), а также спектроскопия ЯМР, в к-рой установлены спец. эффекты, имеющие чисто стереохим. происхождение: энантиотопия и диастереотопия (см. Топные отношения).

В основе С. лежит фундам. триада понятий: конформация, хиральность, конфигурация. Конформация есть моментальное состояние молекулы, каждая молекула есть совокупность всех достижимых конформации. Хиральность-феномен, свойственный любым объектам, к-рые несовместимы со своим отображением в плоском зеркале. Поэтому хи-ральность присуща не всем молекулам. Хиральные молекулы существуют в виде пар энантиомеров (см. Изомерия), для к-рых используют понятие конфигурации. С. хиральных молекул называют иногда хиральной С.

Важное практич. значение имеет получение чистых энантиомеров, поскольку они обладают рядом полезных св-в, в первую очередь биол. активностью. Спец. направление составляет энантиоселективный синтез (и катализ), к-рый разрабатывает методы получения энантиомерно обогащенных соед. (см. Асимметрический синтез, Стереоселективный синтез). Высокой энантиоселективностью отличаются прир. катализаторы-ферменты. Интересный подраздел представляет абс. асимметрич. синтез под действием асимметризу-ющего физ. воздействия (поляризов. излучение, энантиоморфный кристалл), а не асимметризующего хим. реагента.

Пространств. координацию атома в молекуле анализируют на основе сведения конфигурации молекулы к форме геом. фигуры-полиэдра (см. Координационные полиэдры, Полиэдрические соединения), что удобно для анализа хи-ральности и конфигурации. Геом. фигуры явились образцом для синтеза таких молекул, как кубан, додекаэдран и др. Лента Мёбиуса легла в основу альтернативной концепции (Хюккеля-Мёбиуса) замкнутых p-электронных систем, а также синтеза молекулы в форме односторонней пов-сти. Вместе с катенанами, ротаксанами, узлами они составили основу новой концепции-топологическая С.

Наиб. сложным является анализ пространств. строения мол. ансамблей, составленных из двух и более молекул, к к-рым относятся, в частности, катенаны и ротаксаны. Еще более важны широко распространенные, в т. ч. и в природе, соед. включения, когда фиксируется энергетически выгодная конформация, в к-рой одна молекула ("гость") прочно входит в полость др. молекулы ("хозяина"). Частным случаем является тип "молекула в клетке"-комплексы кар-церандов.

Хиральная С. оперирует понятиями элементов хираль-ности, т. е. наим. структурных фрагментов молекулы, к-рые обладают хиральностью. Соотв. различают центральную, осевую, планарную и винтовую хиральность. Установление абс. конфигурации хирального фрагмента молекулы производится посредством корреляции (соотношения) с др. молекулами, конфигурация к-рых уже известна. В конечном счете существует единств. метод, к-рый позволяет отличить "правую" конфигурацию от "левой"-аномальное рассеяние рентгеновских лучей.

Сравнение конфигураций начальной и конечной молекул в к.-л. хим. р-ции дает важную информацию о механизме этой р-ции, поскольку предположение об элементарном акте и переходном состоянии содержит один из трех вариантов: сохранение конфигурации хирального фрагмента, изменение ее на противоположную или рацемизацию (см. Рацематы), т.е. равновероятное образование обеих конфигураций, или потеря конфигурации. Определение действительного стерич. результата позволяет отбросить нек-рые гипотетич. механизмы, к-рые неправильно предсказывают стерич. результат.

История С. началась с открытия_Ж. Био В. 1815 оптической активности орг. соединений в р-рах. Затем Л. Пастер в сер. 1840-х гг. разработал первые хим. и биохим. методы разделения рацематов на энантиомеры и впервые высказал мысль, что оптич. активность в-в-следствие асимметрии молекул. Позже (1874) Я. Вант-Гофф и Ж. Ле Бель, построили теорию тетраэдрич. углеродного атома, а в 1893 A. Вернер предложил октаэдрич. строение комплексов ме-таллов. Исследование стереохим. хода р-ций началось с открытия П. Вальденом в 1896 обращения конфигурации при бимолекулярном нуклеоф. замещении (вальденовское обращение). Э. Хьюз и К. Инголд в 1930-х гг. широко применяли стереохим. подход к изучению механизмов хим. р-ций. Ряд исследователей, начиная с Э. Коттона, развили методы кругового дихроизма и дисперсии оптич. вращения. В 1960-х гг. сформировалось представление о хиральных элементах и значении топологии для С. (В. Прелог). В 1966 разработана универсальная номенклатура стереохимичес-кая и введено понятие о хиральности (Р. Кан, Инголд, Прелог). Параллельно, начиная с середины столетия, развивался конформац. анализ, широкое применение к-рого в значит. степени обязано работам О. Хасселя, Прелога и Д. Бартона. Авторы работ по С. дважды были удостоены Нобелевской премии по химии-Хассель и Бартон за развитие конформац. анализа (1969), Прелог и Дж. Корнфорт за исследование методов стереоселективного синтеза (1975). Процесс проникновения мат. подходов в С. продолжается до настоящего времени (Э. Уги, Э. Рух, К. Мислоу и др.).

Лит.: Илиэл Э., Стереохимия соединений углерода, пер. с англ., М., 1965; Соколов В. И., Введение в теоретическую стереохимию, М., 1982; Ногра-ди М., Стереохимия, пер. с англ., М., 1984; Потапов В. М., Стереохимия, 2 изд., М., 1988. В. И. Соколов.


B-сультон Сажа Сакагучи реакция Салициловая кислота Салициловый альдегид Саломас Самарий Самовозгорание Самовоспламенение Самоорганизация Санталидол Санталол Сапонины Сапропелиты Саркозиды Сафлоровое масло Сафрол Сахара Сахарин Сахароза Сварка Сверхкислоты Сверхпроводники Сверхтонкие взаимодействия Светеналь Светостабилизаторы Светостойкость Свинец Свинецорганические соединения Свинца азиды Свинца ацетаты Свинца галогениды Свинца оксиды Свинца сплавы Свинца сульфаты Свинца титанат Свинца тринитрорезорцинат Свинца халькогениды Связующие Сгущение Сдвига правило Сдвигающие реагенты Себациновая кислота Сегнетоэлектрики Седативные средства Седиментационный анализ Седиментация Секретин Секстетные перегруппировки Секуринеги Секуринин Селективная очистка Селен Селена оксиды Селенаты Селенйды Селенорганические соединения Селенофен Селитры Семидиновая перегруппировка Семикарбазид Семикарбазоны Семихиноны Сенсибилизация оптическая Сенсоры химические Сепарация воздушная Сера Сераорганические соединения Серебра нитрат Серебра сульфид Серебро Серин Серная кислота Сернистая кислота Сернистые красители Сернистый ангидрид Сернокислотная очистка Серные удобрения Серный ангидрид Серный эфир Сероводород Серотонин Сероуглерод Серы галогениды Серы гексафторид Серы диоксид Серы триоксид Сесквитерпены Сетчатые полимеры Сжимаемость Си Сигматропные перегруппировки Сигнализаторы загорания Сигнальные составы Сиднокарб Сиккативы Сила осциллятора Силаны Силарда-чалмерса эффект Силатраны Силикагель Силикатные краски Силикаты Силиконовые каучуки Силиконы Силилирование Силилфосфиты Силициды Силоксановые каучуки Силоксаны Силумины Сим Симметризация Симметрия молекул Симмонса-смита реакция Симпатолитические средства Син Синдиотактические полимеры Синергисты Синерезис Синильная кислота Синтамиды Синтез-газ Синтетические волокна Синтетические масла Синтон Синхротронное излучение Ситаллы Ситовой анализ Скандий Скатол Сквален Скипидар Склареол Склеивание Скорость реакции Скраупа реакция Слабительные средства Сланцы Сложные реакции Сложные удобрения Сложные эфиры Слоистые пластики Слюды Смазочное действие Смазочные масла Смазочные материалы Смайлса перегруппировка Смачивание Смесевые взрывчатые вещества Смеси полимеров Смешанные удобрения Смешение Смидта реакция Смолы природные Смолы синтетические Смоляные кислоты Снотворные средства Соапсток Согласованные реакции Сода Соевое масло Соединения включения Сокристаллизация Соли Солидолы Сольватация Сольватированный электрон Сольватокомплексы Сольватохромия Сольваты Сольвенты Сольволиз Солюбилизация Соляная кислота Соматолиберин Соматостатин Соматотропин Соммле реакция Сомономеры Соосаждение Сополиконденсация Сополимеризация Сополимеры Сополиэфирные волокна Сопряжение связей Сопряженные реакции Сорбиновая кислота Сорбит Сорбитали Сорбитаны Сорбция Сосновая смола Сотопласты Спазмолитические средства Спекание Спектральный анализ Спектрополяриметрия Спектроскопия Спектроскопия отражения Спектрофотометрия Спилловер Спин Спин-орбитальное взаимодействие Спин-спиновое взаимодействие Спиновая плотность Спинового зонда метод Спинового эха метод Спиновых ловушек метод Спиросоединения Спирт листьев Спирторастворимые красители Спирты Спирты полифторированные Сплавы Сплайсинг Средства для наркоза Сродство к электрону Стабилизаторы Стабилизация полимеров Стандартное состояние Стандартные образцы Стандартный потенциал Старение полимеров Статистическая термодинамика Стафилококковые энтеротоксины Стеариновая кислота Стекло жидкое Стекло кварцевое Стекло неорганическое Стекло органическое Стекло растворимое Стеклования температура Стекловолокниты Стеклообразное состояние Стеклопластики Стеклотекстолиты Стеклянное волокно Стеклянный электрод Степень окисления Стереоизомерия Стереорегулярные полимеры Стереоселективность Стереоселективный катализ Стереоселектйвный синтез Стереоспецифичность Стереохимия Стерины Стерические требования Стероидные алкалоиды Стероидные гормоны Стероиды Стефена реакция Стехиометрия Стивенса перегруппировка Стильбен Стиракс Стиралилацетат Стирол Стирола оксид Стирола сополимеры Стирольные каучуки Столкновений теория Сторка реакция Стрептомицин Стрихнин Стронций Стронция галогениды Стронция карбонат Стронция нитрат Стронция оксид Стронция титанат Строфантин Структура потоков Структурная химия Структурный анализ Структурообразование Студни Сублимация Субстантивные красители Субтилизины Сукцинатдегидрогеназа Сукцинаты Сукцинимид Сулема Сультамы Сультоны Сульфамиды Сульфаминовая кислота Сульфаниламидные препараты Сульфаны Сульфатное мыло Сульфатный щедок Сульфаты неорганические Сульфаты органические Сульфеновые кислоты Сульфиды неорганические Сульфиды органические Сульфиновые кислоты Сульфирование Сульфитный щелок Сульфиты неорганические Сульфиты органические Сульфокислоты Сульфоксиды Сульфолан Сульфолены Сульфонаты Сульфониевые соединения Сульфонилмочевины Сульфоны Сульфосалициловая кислота Сульфоуреид Сульфофталеины Сульфохлориды Сульфураны Сульфурилгалогениды Супероксиддисмутазы Суперфосфаты Сурепное масло Сурьма Сурьмаорганические соединения Сурьмы галогениды Сурьмы оксиды Сурьмы халькогениды Суспензии Суспензионная полимеризация Суспензионный электрод Сушка Сфинголипиды Сфингомиелины Сшивающие агенты Сшитые полимеры Сырой бензол