Словарь научных терминов

Спинового эха метод

СПИНОВОГО ЭХА МЕТОД, радиоспектроскопич. метод исследования в-ва, основанный на возникновении сигналов ЯМР, ЯКР или ЭПР (спинового эха) через нек-рое время после подачи на образец последовательности импульсов радиочастотного электромагн. поля.

Возникновение спинового эха ЯМР или ЭПР можно объяснить с помощью след. модели. Если образец находится в постоянном магн. поле напряженности H0, направленном вдоль оси z, то на единичные магн. дипольные моменты исследуемого в-ва действует вращающий момент, при этом вектор М намагниченности (т.е. магн. момента единицы объема образца), вращается, или прецессирует, вокруг оси z с резонансной частотой w0 = gH0, где g-гиромагнитное отношение для электрона (ЭПР) или ядра (ЯМР). Вектор М состоит из суммы отдельных спиновых компонент, т. наз. изохромат, каждая из к-рых представляет собой совокупность спиновых моментов i, вращающихся с одинаковой частотой w0i = gH0i, где Н0i- напряженность магн. поля в данной точке образца. Допустим, что вектор М направлен вдоль оси z (рис. 1) и система координат x, у, z вращается вокруг оси z с частотой w0. Если в момент времени t = 0 приложить вдоль оси х короткий импульс переменного электромагн. поля Н1 такой же (резонансной) частоты w0, вектор М начнет прецессировать вокруг оси х с угловой скоростью w1 = gН1 и за время tи действия импульса поля H1 он отклонится от оси z на угол (в радианах) q = gH1tи.

https://www.medpulse.ru/image/encyclopedia/2/3/2/13232.jpeg

Рис. 1. Схема движения вектора намагниченности во вращающейся системе координат х, у, z при действии постоянного неоднородного поля H0 и импульсов переменного поля Н1.


Импульс поля H1, действие к-рого приводит к отклонению М на углы q = p/2 и p, называют соотв. 90 °-импульсом и 180 °-импульсом. В момент окончания действия 90°-им-пульса вектор М совпадает с направлением у (рис. 2, а). Вследствие всегда имеющейся неоднородности магн. поля H0 отдельные спиновые изохроматы будут прецессировать вокруг оси z с индивидуальными частотами w0i = w0 b Dw0 (рис. 1). Поэтому после окончания действия импульса Н1 вектор М постепенно рассыпается в "веер" составляющих его векторов спиновых изохромат (рис. 2, б). Этот "веер" можно вновь "собрать" в один вектор, если спустя время т после окончания действия 90°x-импульса включить 180°-импульс вдоль оси х, к-рый повернет "веер" векторов спиновых изохромат вокруг этой оси на 180°x (рис. 2, в; на рис. 1 эти векторы обозначены пунктиром). Направление векторов спиновых изохромат и направление их вращения поменяется на обратное. По этой причине через интервал времени т после окончания действия 180°x-импульса отдельные спиновые изохроматы вновь соберутся вместе (т.к. вектор, прецессирующий с частотой w0 + Dw0 "догонит" вектор с частотой w0Dw0), но уже вдоль оси — у (рис. 2,д). Далее получившийся вектор М, направленный по оси —y, под действием неоднородного поля Н0 опять начнет рассыпаться в "веер" спиновых изохромат (рис. 2,е).

https://www.medpulse.ru/image/encyclopedia/2/3/3/13233.jpeg

Рис. 2. Схема формирования сигналов свободной индукции и спинового эха в неоднородном поле H0 при воздействии 90°x- и 180°x-импульсов: а-поворот вектора М в плоскость ху 90°-импульсом; б-рассыпание в "веер" спиновых изохромат; в-поворот "веера" векторов вокруг оси х 180°x -импульсом; г-собирание спиновых изохромат; д- появление максимума сигнала спинового эха; е-исчезновение сигнала спинового эха.

Детектирующее устройство в С. э. м. регистрирует эле-ктрич. сигнал индукции, наведенный в приемной катушке, причем амплитуда А этого сигнала пропорциональна проекции вектора М на ось у. Поэтому при использовании описанной выше последовательности импульсов (90°x-т-180°) сразу после 90°x-импульса регистрируются затухающий сигнал т. наз. своб. индукции (рассыпание спиновых изохромат), а в момент 2т (т. к. тhttps://www.medpulse.ru/image/encyclopedia/2/3/4/13234.jpegtи)- сигнал спинового эха (собирание спиновых изохромат; рис. 2).

Наиб. часто С. э. м. используют для измерения времен спин-решеточной (продольной) релаксации T1 или спин-.спиновой (поперечной) релаксации Т2, обратные величины к-рых характеризуют скорость релаксации или восстановления нарушенного к.-л. образом теплового равновесия соотв. между системой ядерных или электронных спинов и решеткой либо внутри системы спинов.

Для измерения времени Т2, характеризующего исчезновение намагниченности в плоскости ху, обусловленное неод-нородностью поля H0 и спин-спиновой релаксацией, используют последовательность импульсов 90°-т-180°. Эту последовательность периодически повторяют, каждый раз увеличивая интервал т. Время Т2 определяют по амплитуде сигналов спинового эха: А(т)0ехр(2т/T2).

Для измерения времени T1, характеризующего восстановление намагниченности вдоль оси z после действия 180°-им-пульса, используют повторяющуюся последовательность импульсов 180°-т-90°-т'-180°, каждый раз увеличивая интервал т (постоянный интервал т'https://www.medpulse.ru/image/encyclopedia/2/3/5/13235.jpegт). Время T1 определяют по амплитуде сигналов спиновых эхо: А(т) = A0[1 — -2ехр(-2т/Т1)].

Времена T1 и Т2, измеренные с помощью С. э. м. при разл. условиях эксперимента, содержат информацию о динамике молекул и атомов в твердых телах, жидкостях и газах. Они позволяют изучать процессы образования комплексов, кинетику хим. реакций, внутри- и межмол. взаимодействия, распределение электронов в металлах и сплавах, электрон-ядерные взаимодействия, строение и св-ва молекул.

С. э. м. позволяет измерять коэф. диффузии в жидкостях и нек-рых твердых телах, без внесения в исследуемое в-во меченых молекул или атомов. В этом случае получают огибающую сигналов спиновых эхо, как в методе измерения Т2, но при постоянном или импульсном градиенте магн. поля, направленного вдоль оси z.

С. э. м. применяют также для измерения констант спин-спинового и сверхтонкого взаимодействий, хим. сдвигов, магн. и квадрупольных уширений линий в спектрах ЯМР и ЭПР и др. радиоспектроскопич. параметров. При этом используют разнообразные последовательности и комбинации импульсов поля Н1.

Принципы получения сигналов в С. э. м. использованы в импульсной фурье-спектроскопии ЯМР, в двойном резонансе и др. методах радиоспектроскопии (в т. ч. в методах, применяемых в мед. диагностике).

Лит.: Гречишкин B.C., Ядерные квадрупольные взаимодействия в твердых телах, М., 1973; Салихов К. М., Семенов А.Г., Цветков Ю.Д., Электронное спиновое эхо и его применение, Новосиб., 1976; Вашман А. А., Пронин И.С., Ядерная магнитная релаксационная спектроскопия, М., 1986.

А. А. Вашман.


B-сультон Сажа Сакагучи реакция Салициловая кислота Салициловый альдегид Саломас Самарий Самовозгорание Самовоспламенение Самоорганизация Санталидол Санталол Сапонины Сапропелиты Саркозиды Сафлоровое масло Сафрол Сахара Сахарин Сахароза Сварка Сверхкислоты Сверхпроводники Сверхтонкие взаимодействия Светеналь Светостабилизаторы Светостойкость Свинец Свинецорганические соединения Свинца азиды Свинца ацетаты Свинца галогениды Свинца оксиды Свинца сплавы Свинца сульфаты Свинца титанат Свинца тринитрорезорцинат Свинца халькогениды Связующие Сгущение Сдвига правило Сдвигающие реагенты Себациновая кислота Сегнетоэлектрики Седативные средства Седиментационный анализ Седиментация Секретин Секстетные перегруппировки Секуринеги Секуринин Селективная очистка Селен Селена оксиды Селенаты Селенйды Селенорганические соединения Селенофен Селитры Семидиновая перегруппировка Семикарбазид Семикарбазоны Семихиноны Сенсибилизация оптическая Сенсоры химические Сепарация воздушная Сера Сераорганические соединения Серебра нитрат Серебра сульфид Серебро Серин Серная кислота Сернистая кислота Сернистые красители Сернистый ангидрид Сернокислотная очистка Серные удобрения Серный ангидрид Серный эфир Сероводород Серотонин Сероуглерод Серы галогениды Серы гексафторид Серы диоксид Серы триоксид Сесквитерпены Сетчатые полимеры Сжимаемость Си Сигматропные перегруппировки Сигнализаторы загорания Сигнальные составы Сиднокарб Сиккативы Сила осциллятора Силаны Силарда-чалмерса эффект Силатраны Силикагель Силикатные краски Силикаты Силиконовые каучуки Силиконы Силилирование Силилфосфиты Силициды Силоксановые каучуки Силоксаны Силумины Сим Симметризация Симметрия молекул Симмонса-смита реакция Син Синдиотактические полимеры Синергисты Синерезис Синильная кислота Синтамиды Синтез-газ Синтетические волокна Синтетические масла Синтон Синхротронное излучение Ситаллы Ситовой анализ Скандий Скатол Сквален Скипидар Склареол Склеивание Скорость реакции Скраупа реакция Слабительные средства Сланцы Сложные реакции Сложные удобрения Сложные эфиры Слоистые пластики Слюды Смазочное действие Смазочные масла Смазочные материалы Смайлса перегруппировка Смачивание Смесевые взрывчатые вещества Смеси полимеров Смешанные удобрения Смешение Смидта реакция Смолы природные Смолы синтетические Смоляные кислоты Снотворные средства Соапсток Согласованные реакции Соевое масло Соединения включения Сокристаллизация Соли Солидолы Сольватация Сольватированный электрон Сольватокомплексы Сольватохромия Сольваты Сольвенты Сольволиз Солюбилизация Соляная кислота Соматолиберин Соматостатин Соматотропин Соммле реакция Сомономеры Соосаждение Сополиконденсация Сополимеризация Сополимеры Сополиэфирные волокна Сопряжение связей Сопряженные реакции Сорбиновая кислота Сорбитали Сорбитаны Сорбция Сосновая смола Сотопласты Спазмолитические средства Спекание Спектральный анализ Спектрополяриметрия Спектроскопия Спектроскопия отражения Спектрофотометрия Спилловер Спин Спин-орбитальное взаимодействие Спин-спиновое взаимодействие Спиновая плотность Спинового зонда метод Спинового эха метод Спиновых ловушек метод Спиросоединения Спирт листьев Спирторастворимые красители Спирты Спирты полифторированные Сплавы Сплайсинг Средства для наркоза Сродство к электрону Стабилизаторы Стабилизация полимеров Стандартное состояние Стандартные образцы Стандартный потенциал Старение полимеров Статистическая термодинамика Стафилококковые энтеротоксины Стеариновая кислота Стекло жидкое Стекло кварцевое Стекло неорганическое Стекло органическое Стекло растворимое Стеклования температура Стекловолокниты Стеклообразное состояние Стеклопластики Стеклотекстолиты Стеклянное волокно Стеклянный электрод Степень окисления Стереоизомерия Стереорегулярные полимеры Стереоселективность Стереоселективный катализ Стереоселектйвный синтез Стереоспецифичность Стереохимия Стерины Стерические требования Стероидные алкалоиды Стероидные гормоны Стефена реакция Стехиометрия Стивенса перегруппировка Стильбен Стиракс Стиралилацетат Стирол Стирола оксид Стирола сополимеры Стирольные каучуки Столкновений теория Сторка реакция Стрептомицин Стрихнин Стронций Стронция галогениды Стронция карбонат Стронция нитрат Стронция оксид Стронция титанат Строфантин Структура потоков Структурная химия Структурный анализ Структурообразование Студни Субстантивные красители Субтилизины Сукцинатдегидрогеназа Сукцинаты Сукцинимид Сулема Сультамы Сультоны Сульфамиды Сульфаминовая кислота Сульфаниламидные препараты Сульфаны Сульфатное мыло Сульфатный щедок Сульфаты неорганические Сульфаты органические Сульфеновые кислоты Сульфиды неорганические Сульфиды органические Сульфиновые кислоты Сульфирование Сульфитный щелок Сульфиты неорганические Сульфиты органические Сульфокислоты Сульфоксиды Сульфолан Сульфолены Сульфонаты Сульфониевые соединения Сульфонилмочевины Сульфоны Сульфосалициловая кислота Сульфоуреид Сульфофталеины Сульфохлориды Сульфураны Сульфурилгалогениды Супероксиддисмутазы Суперфосфаты Сурепное масло Сурьма Сурьмаорганические соединения Сурьмы галогениды Сурьмы оксиды Сурьмы халькогениды Суспензии Суспензионная полимеризация Суспензионный электрод Сушка Сфинголипиды Сфингомиелины Сшивающие агенты Сшитые полимеры Сырой бензол