Словарь научных терминов
Сольватация

СОЛЬВАТАЦИЯ, взаимод. молекул растворенного в-ва (или их ассоциатов) с молекулами р-рителя. Приводит к изменению св-в молекул в р-ре (в сравнении со св-вами газовой фазы), влияет на все физ. и физ.-хим. процессы, протекающие в р-рах, в т.ч. определяет скорость реакций в растворах и положение равновесия, а в ряде случаев и их механизм. С. в водных средах часто наз. гидратацией. Наиб. интенсивна С. ионов в растворах электролитов.

С. состоит в том, что молекула растворенного в-ва оказывается окруженной сольватной оболочкой, состоящей из более или менее тесно связанных с ней молекул р-рителя. В результате С. образуются сольваты-мол. образования постоянного или переменного состава. Время жизни соль-ватов определяется характером и интенсивностью межмолекулярных взаимодействий; даже в случае сильного взаимод. время жизни отдельного сольвата мало из-за непрерывного обмена частицами в сольватной оболочке. В соответствии с типами межмол. взаимод. выделяют неспецифическую и специфическую С. Неспецифическая С. обусловлена ван-дер-ваальсовыми взаимод., специфическая С. проявляется гл. обр. вследствие электростатич. взаимод., коор-динац. и водородных связей.

Важнейшие термодинамич. характеристики С.-энталь-пия С. DHc и энергия Гиббса С. (своб. энергия С.) DGc, связанные соотношением:

DGc= DHc-ТDSc,

где DSc-энтропия С., T-абс. т-ра. Энтальпия С. определяет тепловой эффект внедрения молекулы растворенного в-ва в р-ритель; энергия Гиббса С. определяет растворимость в-ва.

Наиб. простой способ эксперим. определения энтальпии С. состоит в непосредств. измерении теплового эффекта растворения в-ва А в р-рителе S-энтальпии растворения DHрА/S-и использовании соотношения:

http://www.medpulse.ru/image/encyclopedia/1/1/9/13119.jpeg

гдеhttp://www.medpulse.ru/image/encyclopedia/1/2/0/13120.jpeg-энтальпия парообразования в-ва А. Благодаря развитию калориметрич. техники определение энтальпий растворения возможно практически для всех систем; осн. проблема состоит в корректном определении энтальпий парообразования. В то же время измерения значений DGc достаточно трудны, особенно в случаях С. ионов в неводных р-рах. Нередко вместо DGc вычисляют изменение этой величины D(DGc) относительно ее значения в водной среде, используя для этого стандартную молярную энергию DGп переноса иона X из воды W в к.-л. р-ритель S:

D(DGc) = DGп(X, W:S)=http://www.medpulse.ru/image/encyclopedia/1/2/1/13121.jpeg(в р-рителе S)-http://www.medpulse.ru/image/encyclopedia/1/2/2/13122.jpeg(в воде),

гдеhttp://www.medpulse.ru/image/encyclopedia/1/2/3/13123.jpeg-стандартный хим. потенциал иона X (рассматривается бесконечно разб. р-р).

Структура ближайшего окружения частицы растворенного в-ва характеризуется координационными числами С., определяемыми как кол-во молекул р-рителя, связанных достаточно долго с этой частицей, чтобы участвовать вместе с ней в диффузионном движении. Число С. зависит от природы растворенной частицы и р-рителя, а также в нек-рой степени от используемого метода определения; обычно используют данные по сжимаемости р-ра, скорости диффузии ионов, электропроводности, а также термохим. методы, электронное спиновое эхо и др. Для одновалентных ионов щелочных металлов и галогенов числа С. составляют от 0,5 до 5,0 (значения меньше 1 свидетельствуют о том, что в нек-рые моменты времени сольват-ная оболочка отсутствует).

В бинарных р-рителях, состоящих из нейтрального (не-полярного) и активного (полярного) компонентов, возникает селективная С., при к-рой состав сольватной оболочки резко отличается от состава р-ра в целом. Особенно сильна селективная С. при малых концентрациях полярного компонента.

При исследовании динамич. поведения молекул в р-рах, их реакц. способности, для описания С. короткоживущих состояний используют понятие неравновесной С. (неравновесной среды), при к-рой состав и строение сольватных оболочек не отвечают минимуму своб. энергии системы, достижимому при условии бесконечности времени жизни данных состояний. Напр., состояния молекул, из к-рых происходит оптич. (излучательный) квантовый переход, всегда сольватированы неравновесно. Неравновесность среды определяется как вращательными, так и трансляц. степенями свободы молекул р-рителя. Релтаксация среды к равновесию происходит по закону ехр(-tL), где t- время, тL- характеристика релаксац. способности р-рителя. Для воды, напр., тL = 0,25·10-12 с.

Сольватирующая способность р-рителя оценивается по ряду эмпирич. параметров с использованием эмпирич. шкал р-рителей. Иногда пользуются понятием "сила р-рителя", основанным на предположении о независимости сольвати-рующей способности р-рителя от св-в растворяемого в-ва. Одной из наиб. универсальных характеристик сольвати-рующей способности р-рителя является его диэлектрич. проницаемость e.

Впервые влияние р-рителя на кинетику р-ций этерифика-ции было обнаружено М. Бертло в 1854; впоследствии Н.А. Меншуткин установил (1890), что хим. р-цию нельзя рассматривать отдельно от среды, в к-рой она протекает. Возможность теоретич. расчета влияния р-рителя на реакц. способность и статич. св-ва молекул растворенного в-ва определяется гл. обр. разработанностью теории жидкого состояния (см. Жидкость). В рамках статистич. теории, являющейся основой совр. представлений о структурных и энергетич. св-вах жидкостей и р-ров, полный потенциал F взаимод. молекулы растворенного в-ва со средой, находящейся в термодинамич. равновесии, имеет для одноцент-ровых частиц (напр., атомов благородных газов) вид:

http://www.medpulse.ru/image/encyclopedia/1/2/4/13124.jpeg

где R-расстояние между частицами, f(R)-потенциал парного взаимод. молекул, g(R)- радиальная корреляц. ф-ция распределения, С-постоянная, зависящая, в частности, от плотности среды. Потенциал F позволяет определить энергию межмол. взаимод., если известны ф-ции f(R) и g(R). Применительно к изучению С. такой подход сопряжен с большими математич. трудностями, т. к. не разработана общая теория, позволяющая с достаточной точностью вычислять для реальных систем энергию межмол. взаимод. в широкой области изменения R. Разработаны более простые, в т. ч. модельные, подходы к расчету DHc и DGc, в частности макроскопич. (континуальные) и микроскопич. (дискретные) способы описания эффектов С. Континуальные методы основаны на моделях М. Борна, Л. Онсагера, Д. Кирквуда. Своб. энергия С. молекулы в среде равна:

http://www.medpulse.ru/image/encyclopedia/1/2/5/13125.jpeg

где а-радиус полости, вырезаемой в результате внедрения молекулы растворенного в-ва в р-ритель, Qj, Qk - эффективные заряды на j-м и k-м атомах этой молекулы, N - число атомов в ней, Рn-полиномы Лежандра, описывающие соотв. монопольные, дипольные, октупольные взаимод. и эффекты более высоких порядков, Од-углы, образованные векторами rj и rk, определяющими положения атомов у и k. Частными случаями данного ур-ния являются ур-ния для своб. энергии С. иона DG0-ур-ние Борна:

http://www.medpulse.ru/image/encyclopedia/1/2/6/13126.jpeg

(Q-заряд иона) и ур-ние Онсагера (модель реактивного поля):

http://www.medpulse.ru/image/encyclopedia/1/2/7/13127.jpeg

где m-дипольный момент молекулы растворенного в-ва. Несмотря на широкое использование ур-ния Онсагера, ряд опытных данных не подтверждается расчетом, напр. линейная зависимость энтальпии и своб. энергии сольватации от дипольного момента m.

Более точные расчеты в рамках микроскопии, подходов получены с использованием методов Монте-Карло и мол, динамики. В методе мол. динамики с помощью ЭВМ численно решают классич. ур-ния движения Ньютона, считая известной потенц. энергию взаимод. молекул. Это позволяет "наблюдать" за движением отдельных молекул жидкости, определять фазовые траектории, а затем усреднять их по времени и находить значения требуемых термодинамич. и структурных ф-ций. Метод позволяет рассчитать статич. и динамич. св-ва р-ров, в т. ч. и для неравновесных процессов. В методе Монте-Карло состояния рассматриваемой системы частиц считаются случайными, задача же состоит в отборе наиб. вероятных конфигураций и послед. усреднении по этим конфигурациям разл. св-в. Ввиду этого метод приспособлен для расчета лишь равновесных величин. Развитие ЭВМ позволяет применять оба метода ко все более широкому кругу объектов. В результате оказывается возможным корректное разделение энтальпий и своб. энергий С. на физически обоснованные вклады, связанные с разл. взаимод., и анализ зависимостей между ними. Методы Монте-Карло и мол. динамики позволяют рассчитывать энтальпии С. с точностью, сравнимой е экспериментальной (5-10 кДж/моль). Однако пока они не позволяют учитывать взаимную поляризацию р-рителя и растворенного в-ва, а также структурную перестройку в р-ре. Эти эффекты возможно определить с помощью квантовохим. расчетов, к-рые позволяют прогнозировать строение и св-ва изолир. молекул и механизмы р-ций, что необходимо для корректного выделения вклада, обусловленного непосредственно влиянием р-рителя. Поверхности потенциальной энергии молекул и реагирующих систем в газовой фазе и в р-рах могут иметь принципиально разл. профиль.

С. приводит к тому, что тип р-рителя изменяет скорость хим. р-ций (до 109 раз), определяет относит. устойчивость таутомеров, конформеров, изомеров, влияет на механизм р-ций. Положения кислотно-основных равновесий в значит. степени определяются сольватирующей способностью р-рителя. Подробнее о влиянии С. на физ.-хим", характеристики растворенных в-в и их реакц. способность см. в ст. Реакции в растворах.

На влиянии С. на характеристики электронных спектров поглощения и испускания основано явление, наз. сольватохромией.

Лит.: Бургер К., Сольватация, ионные реакции и комплексообразование в неводных средах, пер. с англ., М., 1984; Симкин Б. Я." Шейхет И. И., Квантовохямичсская и статистическая теория растворов. Вычислительные методы и их применение, М., 1989; Solvents and solvent effects in organic chemistry, ed. by Ch. Reichardt, N.Y., 1988. Б.Я. Симкин.


B-сультон Сажа Сакагучи реакция Салициловая кислота Салициловый альдегид Саломас Самарий Самовозгорание Самовоспламенение Самоорганизация Санталидол Санталол Сапонины Сапропелиты Саркозиды Сафлоровое масло Сафрол Сахара Сахарин Сахароза Сварка Сверхкислоты Сверхпроводники Сверхтонкие взаимодействия Светеналь Светостабилизаторы Светостойкость Свинец Свинецорганические соединения Свинца азиды Свинца ацетаты Свинца галогениды Свинца оксиды Свинца сплавы Свинца сульфаты Свинца титанат Свинца тринитрорезорцинат Свинца халькогениды Связующие Сгущение Сдвига правило Сдвигающие реагенты Себациновая кислота Сегнетоэлектрики Седативные средства Седиментационный анализ Седиментация Секретин Секстетные перегруппировки Секуринеги Секуринин Селективная очистка Селен Селена оксиды Селенаты Селенйды Селенорганические соединения Селенофен Селитры Семидиновая перегруппировка Семикарбазид Семикарбазоны Семихиноны Сенсибилизация оптическая Сенсоры химические Сепарация воздушная Сера Сераорганические соединения Серебра нитрат Серебра сульфид Серебро Серин Серная кислота Сернистая кислота Сернистые красители Сернистый ангидрид Сернокислотная очистка Серные удобрения Серный ангидрид Серный эфир Сероводород Серотонин Сероуглерод Серы галогениды Серы гексафторид Серы диоксид Серы триоксид Сесквитерпены Сетчатые полимеры Сжимаемость Си Сигматропные перегруппировки Сигнализаторы загорания Сигнальные составы Сиднокарб Сиккативы Сила осциллятора Силаны Силарда-чалмерса эффект Силатраны Силикагель Силикатные краски Силикаты Силиконовые каучуки Силиконы Силилирование Силилфосфиты Силициды Силоксановые каучуки Силоксаны Силумины Сим Симметризация Симметрия молекул Симмонса-смита реакция Симпатолитические средства Син Синдиотактические полимеры Синергисты Синерезис Синильная кислота Синтамиды Синтез-газ Синтетические волокна Синтетические масла Синтон Синхротронное излучение Ситаллы Ситовой анализ Скандий Скатол Сквален Скипидар Склареол Склеивание Скорость реакции Скраупа реакция Слабительные средства Сланцы Сложные реакции Сложные удобрения Сложные эфиры Слоистые пластики Слюды Смазочное действие Смазочные масла Смазочные материалы Смайлса перегруппировка Смачивание Смесевые взрывчатые вещества Смеси полимеров Смешанные удобрения Смешение Смидта реакция Смолы природные Смолы синтетические Смоляные кислоты Снотворные средства Соапсток Согласованные реакции Сода Соевое масло Соединения включения Сокристаллизация Соли Солидолы Сольватация Сольватированный электрон Сольватокомплексы Сольватохромия Сольваты Сольвенты Сольволиз Солюбилизация Соляная кислота Соматолиберин Соматостатин Соматотропин Соммле реакция Сомономеры Соосаждение Сополиконденсация Сополимеризация Сополимеры Сополиэфирные волокна Сопряжение связей Сопряженные реакции Сорбиновая кислота Сорбит Сорбитали Сорбитаны Сорбция Сосновая смола Сотопласты Спазмолитические средства Спекание Спектральный анализ Спектрополяриметрия Спектроскопия Спектроскопия отражения Спектрофотометрия Спилловер Спин Спин-орбитальное взаимодействие Спин-спиновое взаимодействие Спиновая плотность Спинового зонда метод Спинового эха метод Спиновых ловушек метод Спиросоединения Спирт листьев Спирторастворимые красители Спирты Спирты полифторированные Сплавы Сплайсинг Средства для наркоза Сродство к электрону Стабилизаторы Стабилизация полимеров Стандартное состояние Стандартные образцы Стандартный потенциал Старение полимеров Статистическая термодинамика Стафилококковые энтеротоксины Стеариновая кислота Стекло жидкое Стекло кварцевое Стекло неорганическое Стекло органическое Стекло растворимое Стеклования температура Стекловолокниты Стеклообразное состояние Стеклопластики Стеклотекстолиты Стеклянное волокно Стеклянный электрод Степень окисления Стереоизомерия Стереорегулярные полимеры Стереоселективность Стереоселективный катализ Стереоселектйвный синтез Стереоспецифичность Стереохимия Стерины Стерические требования Стероидные алкалоиды Стероидные гормоны Стероиды Стефена реакция Стехиометрия Стивенса перегруппировка Стильбен Стиракс Стиралилацетат Стирол Стирола оксид Стирола сополимеры Стирольные каучуки Столкновений теория Сторка реакция Стрептомицин Стрихнин Стронций Стронция галогениды Стронция карбонат Стронция нитрат Стронция оксид Стронция титанат Строфантин Структура потоков Структурная химия Структурный анализ Структурообразование Студни Сублимация Субстантивные красители Субтилизины Сукцинатдегидрогеназа Сукцинаты Сукцинимид Сулема Сультамы Сультоны Сульфамиды Сульфаминовая кислота Сульфаниламидные препараты Сульфаны Сульфатное мыло Сульфатный щедок Сульфаты неорганические Сульфаты органические Сульфеновые кислоты Сульфиды неорганические Сульфиды органические Сульфиновые кислоты Сульфирование Сульфитный щелок Сульфиты неорганические Сульфиты органические Сульфокислоты Сульфоксиды Сульфолан Сульфолены Сульфонаты Сульфониевые соединения Сульфонилмочевины Сульфоны Сульфосалициловая кислота Сульфоуреид Сульфофталеины Сульфохлориды Сульфураны Сульфурилгалогениды Супероксиддисмутазы Суперфосфаты Сурепное масло Сурьма Сурьмаорганические соединения Сурьмы галогениды Сурьмы оксиды Сурьмы халькогениды Суспензии Суспензионная полимеризация Суспензионный электрод Сушка Сфинголипиды Сфингомиелины Сшивающие агенты Сшитые полимеры Сырой бензол