Словарь научных терминов
Регуляторные белки

РЕГУЛЯТОРНЫЕ БЕЛКИ (от лат. regulo-привожу в порядок, налаживаю), группа белков, участвующих в регуляции разл. биохим. процессов. Важная группа Р. б., к-рым посвящена эта статья,-белки, взаимодействующие с ДНК и управляющие экспрессией генов (выражение гена в признаках и св-вах организма). Подавляющее большинство таких Р. б. функционирует на уровне транскрипции (синтез матричных РНК, или мРНК, на ДНК-матрице) и отвечает за активацию или репрессию (подавление) синтеза мРНК (соотв. белки-активаторы и белки-репрессоры).

Известно ок. 10 репрессоров. Наиб. изучены среди них репрессоры прокариот (бактерии, синезеленые водоросли), регулирующие синтез ферментов, участвующих в метаболизме лактозы (lac-репрессор) в Escherichia coli (E.coli), и репрессор бактериофага А,. Их действие реализуется путем связывания со специфич. участками ДНК (операторами) соответствующих генов и блокирования инициации транскрипции кодируемых этими генами мРНК.

Репрессор представляет собой обычно димер из двух идентичных полипептидных цепей, ориентированных во взаимно противоположных направлениях. Репрессоры физически препятствуют РНК-полимеразе присоединиться к ДНК в промоторном участке (место связывания ДНК-зависимой РНК-полимеразы-фермента, катализирующего синтез мРНК на ДНК-матрице) и начать синтез мРНК. Предполагают, что репрессор препятствует только инициации транскрипции и не оказывает влияния на элонгацию мРНК.

Репрессор может контролировать синтез к.-л. одного белка или целого ряда белков, экспрессия к-рых носит координированный характер. Как правило, это ферменты, обслуживающие один метаболич. путь; их гены входят в состав одного оперона (совокупность связанных между собой генов и прилегающих к ним регуляторных участков).

Мн. репрессоры могут существовать как в активной, так и в неактивной форме в зависимости от того, связаны они или нет с индукторами или корепрессорами (соотв. субстраты, в присут. к-рых специфически повышается или понижается скорость синтеза определенного фермента; см. Регуляторы ферментов); эти взаимод. имеют нековалент-ную природу.

Для эффективной экспрессии генов необходимо не только, чтобы репрессор был инактивирован индуктором, но также реализовался и специфич. положит. сигнал включения, к-рый опосредуется Р. б., работающими "в паре" с циклич. аденозинмонофосфатом (цАМФ). Последний связывается со специфическими Р. б. (т.наз. САР-белок-активатор ката-болитных генов, или белковый активатор катаболизма-БАК). Это димер с мол. м. 45 тыс. После связывания с цАМФ он приобретает способность присоединяться к специфич. участкам на ДНК, резко увеличивая эффективность транскрипции генов соответствующего оперона. При этом САР не влияет на скорость роста цепи мРНК, а контролирует стадию инициации транскрипции-присоединение РНК-полимеразы к промотору. В противоположность реп-рессору САР (в комплексе с цАМФ) облегчает связывание РНК-полимеразы с ДНК и делает акты инициации транскрипции более частыми. Участок присоединения САР к ДНК примыкает непосредственно к промотору со стороны, противоположной той, где локализован оператор.

Позитивную регуляцию (напр., lac-оперона E.coli) можно описать упрощенной схемой: при понижении концентрации глюкозы (осн. источника углерода) увеличивается концентрация цАМФ, к-рый связывается с САР, а образовавшийся комплекс-с lac-промотором. В результате стимулируется связывание РНК-полимеразы с промотором и возрастает скорость транскрипции генов, к-рые кодируют ферменты, позволяющие клетке переключаться на использование др. источника углерода-лактозы. Существуют и др. специальные Р. б. (напр., белок С), функционирование к-рых описывается более сложной схемой; они контролируют узкий спектр генов и могут выступать в роли как репрессоров, так и активаторов.

Репрессоры и оперон-специфичные активаторы не влияют на специфичность самой РНК-полимеразы. Этот последний уровень регуляции реализуется в случаях, предполагающих массир. изменение спектра экспрессирующихся генов. Так, у E.coli гены, кодирующие белки теплового шока, к-рые экспрессируются при целом ряде стрессовых состояний клетки, считываются РНК-полимеразой только тогда, когда в ее сослав включается особый Р.б.-т.наз. фактор s32. Целое семейство этих Р.б. (s-факторы), изменяющие про-моторную специфичность РНК-полимеразы, обнаружены у бацилл и др. бактерий.

Др. разновидность Р.б. изменяет каталитич. св-ва РНК-полимеразы (т.наз. белки-антитерминаторы). Так, у бактериофага X известны два таких белка, к-рые модифицируют РНК-полимеразу так, что она не подчиняется клеточным сигналам терминации (окончания) транскрипции (это необходимо для активной экспрессии фаговых генов).

Общая схема генетич. контроля, включающая функционирование Р.б., приложима также к бактериям и к клеткам эукариот (все организмы, за исключением бактерий и сине-зеленых водорослей).

Эукариотич. клетки реагируют на внеш. сигналы (для них это, напр., гормоны) в принципе так же, как бактериальные клетки реагируют на изменения концентрации питат. в-в в окружающей среде, т.е. путем обратимой репрессии или активации (дерепрессии) отдельных генов. При этом Р.б., одновременно контролирующие активность большого числа генов, могут использоваться в разл. комбинациях. Подобная комбинационная генетич. регуляция может обеспечивать дифференцир. развитие всего сложного многоклеточного организма благодаря взаимод. относительно небольшого числа ключевых Р. б.

В системе регуляции активности генов у эукариот имеется дополнит. уровень, отсутствующий у бактерий, а именно-перевод всех нуклеосом (повторяющихся субъединиц хроматина), входящих в состав транскрипционной единицы, в активную (деконденсированную) форму в тех клетках, где данный ген должен быть функционально активен. Предполагается, что здесь задействован набор специфических Р. б., не имеющих аналогов у прокариот. Эти белки не только узнают специфич. участки хроматина (или. ДНК), но и вызывают определенные структурные изменения в прилежащих областях. Р.б., подобные активаторам и репрессорам бактерий, по-видимому, участвуют в регуляции последующей транскрипции отдельных генов в районах активир. хроматина.

Обширный класс Р.б. эукариот-рейепторные белки стероидных гормонов.

Аминокислотная последовательность Р.б. кодируется т.наз. регуляторными генами. Мутационная инактивация репрессора приводит к неконтролируемому синтезу мРНК, и, следовательно, определенного белка (в результате транс-ляции-синтеза белка на мРНК-матрице). Такие организмы наз. конститутивными мутантами. Утрата в результате мутации активатора приводит к стойкому снижению синтеза регулируемого белка.

Лит.: Страйер Л., Биохимия, пер. с англ., т. 3, М., 1985, с. 112-25.

П.Л.Иванов.


Радзишевского реакция Радиационная защита Радиационная полимеризация Радиационная стойкость Радиационная химия Радий Радикалов теория Радикалы свободные Радикальная полимеризация Радикальные пары Радикальные реакции Радиоактивационный анализ Радиоактивность Радиоактивные отходы Радиоактивные ряды Радиография Радиозащитные средства Радиолиз Радиометрия Радионуклиды Радиопоглощающие и радиопрозрачные материалы Радиопрозрачные материалы Радиоспектроскопия Радиохимическая чистота Радиохимия Радиоэкология Радон Раймера-тимана реакция Райссерта реакция Ракетные топлива Рамановская спектроскопия Рамберга-бэклунда реакция Рамноза Рапсовое масло Расклинивающее давление Распиливание Расплавы Рассеянные элементы Растворение Растворимость Растворители Растворы Растворы неэлектролитов Растворы полимеров Растворы электролитов Растительные масла Расходомеры Расщепление рацематов Раффиноза Рацематы Рацемизация Рашига реакции Рвотные средства Реагенты органические Реадиновые алкалоиды Реактивные топлива Реактивы химические Реактопласты Реакторы химические Реакции в растворах Реакции в твердых телах Реакции химические Реакционная способность Реакционная хроматография Ребиндера эффект Регуляторные белки Регуляторы роста растений Регуляторы ферментов Редкие элементы Редкоземельные элементы Редокс-иониты Редукторные масла Резерпин Резина Резиновая смесь Резиновые клей Резольные смолы Резонанса теория Резонансное взаимодействие Резорцин Рекомбинация Рекомбинация генетическая Ректификация Релаксационные методы Релаксация Ремантадин Рений Ренийорганические соединения Ренин Рения оксиды Рентгеновская спектроскопия Рентгенография Реология Репарация Репелленты Репликация Реппе реакции Репрография Рестриктазы Ретаболил Ретроионилиденовая перегруппировка Ретросинтетический анализ Реформатского реакция Рефрактометрия Рефракция молярная Рецепторные белки Рибоза Рибонуклеазы Рибонуклеиновые кислоты Рибонуклеозид-дифосфат-редуктазы Рибосома Рибофлавин Риттера реакция Риформат Риформинг Рицин Рицинолевая кислота Робинсона-манниха реакция Робинсона-шепфа реакция Родамины Роданиды Роданины Родентициды Родий Родийорганические соединения Родионова реакция Родопсин Розенмунда реакция Розеноксйд Росы точка Ротаксаны Ротенон Роторные аппараты Ртути галогениды Ртути оксиды Ртути сульфиды Ртути халькогениды Ртуть Рубеановодородная кислота Рубидий Рубидия галогениды Руда Руле перегруппировка Рутений Рутил Рыжиковое масло Ряд напряжений