Словарь научных терминов
Реакторы химические

РЕАКТОРЫ ХИМИЧЕСКИЕ (от лат. rе- приставка, означающая обратное действие, и actor - приводящий в действие, действующий), пром. аппараты для осуществления хим. р-ций. Конструкция и режим работы Р. х. определяются типом р-ции, фазовым состоянием реагентов, характером протекания процесса во времени (периодический, непрерывный, с изменяющейся активностью катализатора), режимом движения реакц. среды (периодический, полупроточный, с рециклом), тепловым режимом работы (адиабатический, изотермический, с теплообменом), типом теплообмена, видом теплоносителя. По типу конструкции Р. х. подразделяют на емкостные, колонные, трубчатые (рис. 1). Емкостные Р. х.-полые аппараты, часто снабженные перемешивающим устройством. Перемешивание газо-жидкостных систем может производиться барботированием газообразного реагента. Теплообмен осуществляется через пов-сть Р. х. или путем частичного испарения жидкого компонента реакц. смеси. К реакторам этого типа относят также аппараты с неподвижным или псевдоожиженным слоем (одним или несколькими) катализатора (см., напр., Псевдоожижение). В многослойных реакторах теплообмен осуществляется смешением потоков реагентов или в теплообменных элементах аппарата. В емкостных Р. х. проводят непрерывные, перио-дич. и полупериодич. процессы (см. Непрерывные и периодические процессы).

http://www.medpulse.ru/image/encyclopedia/3/3/4/12334.jpeg

http://www.medpulse.ru/image/encyclopedia/3/3/5/12335.jpeg

Рис. 1 Основные типы хим. реакторов: а-проточный емкостный реактор с мешалкой и теплообменной рубашкой; б - многослойный каталитич. реактор с промежуточными и теплообменными элементами; в-колонный реактор с насадкой для двухфазного процесса; г-трубчатый реактор; И-исходные в-ва; П- продукты р-ции; Т - теплоноситель; К - катализатор; Н-насадка; ТЭ теплообмен-ные элементы.

Колонные Р.х. могут быть пустотелыми либо заполненными катализатором или насадкой (см. Насадочные аппараты). Для улучшения межфазного массообмена применяют диспергирование с помощью разбрызгивателей (см. Распыливание), барботеров, мех. воздействия (вибрация тарельчатой насадки, пульсация потоков фаз) или насадки, обеспечивающей высокоскоростное пленочное движение фаз. Р.х. данного типа используют в осн. для проведения непрерывных процессов в двух- или трехфазных системах. Трубчатые Р.х. применяют часто для каталитич. р-ций с теплообменом в реакц. зоне через стенки трубок и для осуществления высокотемпературных процессов газификации. При одновременном скоростном движении неск. фаз в таких реакторах достигается наиб. интенсивный межфазный массообмен. Специфич. особенностями отличаются Р. х. для электрохим. (см. Электролиз), плазмохим. (см. Плазма-химическая технология) и радиационно-хим. (см. Радиацион-но-химическая технология) процессов.

При расчете Р. х. определяют необходимые для достижения заданной производительности и селективности процесса объем аппарата, скорость потока, пов-сть теплообмена, гидравлич. сопротивление, режим работы, конструктивные параметры (уточняются на основании аэродинамич. испытаний). Расчет выполняют на основе данных по термодинамике и кинетике р-ций, скорости тепло- и массообмена (см. Макрокинетика)с учетом структуры потоков в аппаратах. Наиб. полный расчет, проводимый методом моделирования с использованием ЭВМ, включает определение полей т-ры и концентрации, оптим. режима, схемы теплообмена и циркуляции (см. Оптимизация), а также, наряду с выбором способа управления, анализ устойчивости режима. См. также Массообмен, Перемешивание, Печи, Пленочные аппараты, Теплообмен.

Лит.: Левеншпиль О., Инженерное оформление химических процессов пер. с англ., М., 1969; Дидушинский Я., Основы проектирования каталити ческих реакторов, пер. с польск., М., 1972; Расчет химико-технологических процессов, под ред. И. П. Мухленова, Л., 1976; Общая химическая технология, ч. 1. Теоретические основы химической технологии, 4 изд., М., 1984, с. 77-119 Кутепов А. М., Бондарева Т. И., Беренгартен М. Г., Общая химичес кая технология, 2 изд., ч. 1, М., 1990, с. 63-169. B.C. Бесков

Динамические режимы хим. реакторов характеризуются изменением во времени параметров, определяющих состояние процесса (концентрация, т-ра, давление и др.). В дина-мич. режиме всегда функционирует реактор периодич. действия, в к-ром ход процесса изменяется от момента загрузки сырья до выгрузки готового продукта. Реактор непрерывного действия должен работать в стационарном, неизменном во времени режиме. Однако из-за неизбежных внеш. возмущений, напр. изменения состава сырья, условий отвода или подвода теплоты, возникают отклонения от стационарного режима. Они м. б. незначительными и существенными, приводящими к заметным изменениям качества продукта, производительности реактора и даже к авариям. Динамич. режимы реакторов непрерывного действия исследуют с помощью их мат. моделей в виде диффе-ренц. ур-ний в обыкновенных или частных производных.

Динамич. режимы непрерывно действующего реактора идеального смешения, в к-ром протекает экзотермич. р-ция первого порядка, описываются безразмерной системой ур-ний, составленной на основе материального (1) и теплового (2) балансов:

http://www.medpulse.ru/image/encyclopedia/3/3/6/12336.jpeg

http://www.medpulse.ru/image/encyclopedia/3/3/7/12337.jpeg

где х, у -переменные, пропорциональные соотв. концентрации реагирующего в-ва и т-ре в реакторе; x0, y0-те же переменные для потока на входе реактора; ут - переменная, пропорциональная т-ре окружающей среды; l-констан та, пропорциональная расходу потока на входе реактора, b-константа, пропорциональная коэф. теплопередачи и площади пов-сти теплообмена с окружающей средой; т-время.

Стационарные режимы реактора определяются условием dx/dт = dy/dт = 0. Решение ур-ний (1), (2) при этом дает значения xs и ys для стационарного состояния. В зависимости от параметров реактора стационарных состояний м. б. одно или три; в общем случае их всегда нечетное число.

Динамич. режимы исследуют с помощью фазовой плоскости x, у. Решения системы (1), (2) являются ф-циями времени х(т), y(т) и начальных условий. Каждому мгновенному состоянию реактора (рис. 2) в момент тк соответствует на плоскости х, у нек-рая точка М, наз. изображающей. При изменении т эта точка будет двигаться по фазовой плоскости; траектория точки наз. фазовой. Вся совокупность траекторий, отвечающих разл. начальным условиям, представляет собой фазовый портрет системы, к-рый однозначно отражает динамич. режимы.

Стационарные состояния реактора изображены на фазовых портретах спец. точками (А, В, С). Направление изменения режима реактора указывается стрелками. Если траектория стремится к стационарному состоянию, то оно устойчиво, а режим реактора работоспособен. Если траектория выходит из стационарного состояния, то оно неустойчиво. Исследования устойчивости стационарных состояний - одна из главных задач изучения динамич. режимов.

На рис. 2 представлены фазовые портреты системы, отражающие наиб. интересные динамич. режимы функционирования хим. реакторов. Портрет а соответствует режиму с единств. устойчивым стационарным состоянием А, при отклонении от к-рого переменные х и у стремятся в него вернуться. Спиральный характер траекторий на портрете б означает, что режим приближения к единств. стационарному состоянию А является колебательным затухающим.

Траектории на портрете в, отвечающие неустойчивому стационарному состоянию А, уходят от него и стремятся к замкнутой траектории Г, наз. предельным циклом. Движение изображающей точки по Г означает незатухающие колебания х и у. Исследования таких режимов (автоколебаний)-еще одна задача изучения динамич. режимов. Портрет г соответствует режиму с тремя стационарными состояниями, одно из к-рых неустойчиво. Принципиально возможен случай, когда все стационарные состояния неустойчивы. При этом они охватываются предельным циклом. Изучение динамич. режимов позволяет решать проблемы оптим. конструирования и автоматизации хим. реакторов.

http://www.medpulse.ru/image/encyclopedia/3/3/8/12338.jpeg

http://www.medpulse.ru/image/encyclopedia/3/3/9/12339.jpeg

Рис. 2. Фазовые портреты хим. реакторов: а-устойчивый режим с монотонным приближением к единств. стационарному состоянию А; б-устойчивый режим с колебат. приближением к состоянию А; в-автоколебат. режим, от стационарного состояния А режим переходит на предельный цикл Г; г-случай трех стационарных состояний, из к-рых А и С устойчивы, В-неустойчиво.

Лит.: Вольтер Б. В., Сальников И. Е., Устойчивость режимов работы химических реакторов, 2 изд., М., 1981; Aris R., Mathematical modelling techniques, S. F., 1979. Б. В. Вольтер.


Радзишевского реакция Радиационная защита Радиационная полимеризация Радиационная стойкость Радиационная химия Радий Радикалов теория Радикалы свободные Радикальная полимеризация Радикальные пары Радикальные реакции Радиоактивационный анализ Радиоактивность Радиоактивные отходы Радиоактивные ряды Радиография Радиозащитные средства Радиолиз Радиометрия Радионуклиды Радиопоглощающие и радиопрозрачные материалы Радиопрозрачные материалы Радиоспектроскопия Радиохимическая чистота Радиохимия Радиоэкология Радон Раймера-тимана реакция Райссерта реакция Ракетные топлива Рамановская спектроскопия Рамберга-бэклунда реакция Рамноза Рапсовое масло Расклинивающее давление Распиливание Расплавы Рассеянные элементы Растворение Растворимость Растворители Растворы Растворы неэлектролитов Растворы полимеров Растворы электролитов Растительные масла Расходомеры Расщепление рацематов Раффиноза Рацематы Рацемизация Рашига реакции Рвотные средства Реагенты органические Реадиновые алкалоиды Реактивные топлива Реактивы химические Реактопласты Реакторы химические Реакции в растворах Реакции в твердых телах Реакции химические Реакционная способность Реакционная хроматография Ребиндера эффект Регуляторные белки Регуляторы роста растений Регуляторы ферментов Редкие элементы Редкоземельные элементы Редокс-иониты Редукторные масла Резерпин Резина Резиновая смесь Резиновые клей Резольные смолы Резонанса теория Резонансное взаимодействие Резорцин Рекомбинация Рекомбинация генетическая Ректификация Релаксационные методы Релаксация Ремантадин Рений Ренийорганические соединения Ренин Рения оксиды Рентгеновская спектроскопия Рентгенография Реология Репарация Репелленты Репликация Реппе реакции Репрография Рестриктазы Ретаболил Ретроионилиденовая перегруппировка Ретросинтетический анализ Реформатского реакция Рефрактометрия Рефракция молярная Рецепторные белки Рибоза Рибонуклеазы Рибонуклеиновые кислоты Рибонуклеозид-дифосфат-редуктазы Рибосома Рибофлавин Риттера реакция Риформат Риформинг Рицин Рицинолевая кислота Робинсона-манниха реакция Робинсона-шепфа реакция Родамины Роданиды Роданины Родентициды Родий Родийорганические соединения Родионова реакция Родопсин Розенмунда реакция Розеноксйд Росы точка Ротаксаны Ротенон Роторные аппараты Ртути галогениды Ртути оксиды Ртути сульфиды Ртути халькогениды Ртуть Рубеановодородная кислота Рубидий Рубидия галогениды Руда Руле перегруппировка Рутений Рутил Рыжиковое масло Ряд напряжений