Словарь научных терминов

Расплавы

РАСПЛАВЫ, жидкости при т-рах, относительно далеких от критич. точки, т.е. ближе к т-ре плавления. Природа Р. определяется в осн. типом хим. связи. Различают металлические Р., ионные, полупроводниковые с ковалентными связями между атомами, органические Р. с ван-дер-ваальсовы-ми связями, высокополимерные Р. и др. По типу хим. соединений говорят о солевых Р., оксидных, оксидно-силикатных (шлаковых) и др. Особыми св-вами обладают эвтектические Р. (см. Диаграмма состояния).

Для Р., как и для жидкости вообще, характерно наличие в структуре ближнего порядка при отсутствии обязательного для кристаллов дальнего порядка. Но в отличие от обычных жидкостей структура Р. содержит кристаллопо-добные группировки - ассоциации, микрокристаллиты с разл. продолжительностью жизни, строение к-рых б. ч. связано со строением кристаллич. фазы. В Р. присутствуют спе-цифич. образования - поры, икосаэдрич. частицы.

При плавлении может существенно изменяться тип хим. связи или, точнее, соотношение между вкладами разных типов связи. Так, мн. полупроводники при плавлении образуют Р. с металлич. проводимостью. Нек-рые галогениды, напр. GaCl3, в кристаллич. состоянии имеющие ионную проводимость, дают Р., состоящий в осн. из молекул (Ga2Cl6), в результате чего электрич. проводимость резко падает. Изменение типа связи иногда наблюдается и при изменении т-ры Р. Напр., у Те вблизи т-ры плавления (142°С) наблюдаются цепочечные молекулы, но уже при 152°С он имеет металлич. характер.

Такие характеристики Р., как среднее координац. число (к. ч.) и межатомные расстояния, могут сильно отличаться от характеристик исходных кристаллич. фаз. Так, при плавлении большинства металлов к. ч. уменьшается (вследствие увеличения числа вакансий и дырок) на 10-15%, тогда как кратчайшие межатомные расстояния не меняются. У полупроводников (Si, Ge) к. ч. при плавлении увеличивается в 1,5 раза (вследствие заполнения пустот и усиления трансляц. движения), увеличиваются и межатомные расстояния. При плавлении солей уменьшаются и к. ч., и межатомные расстояния.

Для многокомпонентных Р. характерны неравновесные, метастабильные состояния, генетически связанные со структурой исходных твердых фаз. Часто наблюдается сильный гистерезис св-в при изменении т-ры, а также зависимость строения и св-в Р. от т-ры и продолжительности выдержки, скорости изменения т-ры, материала контейнера, содержания примесей.

Р. часто имеют сложный состав. Так, ионные Р. (Р. солей, галогенидов металлов, щелочей, оксидов, халькогенидов, шлаковые Р.) в разл. соотношениях содержат как простые и комплексные ионы разного знака, так и недиссоциированные и полимерные молекулы, а также своб. объемы (дырки, дислокации). В силикатных (шлаковых) Р. могут одновременно присутствовать как изолир. кремнекислородные тетраэдры, так и состоящие из них цепи, кольца, сетки и каркасы. В ионных Р. возможны разнообразные хим. р-ции-окислит.-восстановительная, комплексообразование, сольватация и др.

Такая сложная картина вида частиц и природы связи не позволяет предложить однозначную модель структуры Р. В частности, для описания, напр., шлаковых Р. находят применение различные, часто взаимно исключающие модели, многие из к-рых отвечают представлениям о р-рах. Используются как ионные, так и мол. представления, теория регулярных р-ров и теория совершенных ионных р-ров, модель ассоциир. р-ров, полимерная модель и др. Ни одна из моделей не учитывает всех видов компонентов Р. и их возможных взаимодействий. Но модели позволяют интерпретировать те или иные св-ва расплавов, в нек-рых случаях позволяют их рассчитать.

В металлургии Р. являются как промежут. и побочными продуктами (шлаки-силикатно-оксидные Р., штейны сульфидные Р., шпейзы - арсенидные), так и конечными (металлические Р.). Р. используют как электролиты для получения и рафинирования металлов, нанесения покрытий. В виде Р. получают большинство сплавов. Из простых и сложных Р. выращивают монокристаллы, эпитаксиальные пленки. Металлич., оксидные и солевые Р. используют как катализаторы. Солевые Р. применяют в отжиговых и закалочных ваннах, высокотемпературных топливных элементах, как теплоносители, флюсы при пайке и сварке металлов, как реакц. среды в неорг. и орг. синтезе, как поглотители, экстрагенты и т.д. Из соответствующих Р. получают силикатные, фторидные и др. спец. стекла, а также аморфные металлы.

Лит.. Ленинских Б. М., Манаков А. И., Физическая химия оксидных и оксифторидных расплавов, М., 1977; Волков С. В., Грищенко В. Ф., Делимарский Ю. К., Координационная химия солевых расплавов. К.. 1977; Ватолин Н. А., Пастухов Э. А., Дифракционные исследования строения высокотемпературных расплавов, М., 1980; Делимарский Ю.К., Химия ионных расплавов, К., 1980; У ббелоде А. Р., Расплавленное состояние вещества, пер. с англ., М., 1982; Полтавцев Ю. Г., Структура полупроводниковых расплавов, М., 1984; Белащенко Д. К., Структура жидких и аморфных металлов, М., 1985; Ватолин Н. А., "Расплавы", 1987, т. 1, в. 1, с. 5-17; Филиппов Л. П., Свойства жидких металлов, М., 1988; Витинг Л. М., Высокотемпературные растворы-расплавы, М., 1991. П. И. Федоров.


Радзишевского реакция Радиационная защита Радиационная полимеризация Радиационная стойкость Радиационная химия Радий Радикалов теория Радикалы свободные Радикальная полимеризация Радикальные пары Радикальные реакции Радиоактивационный анализ Радиоактивность Радиоактивные отходы Радиоактивные ряды Радиография Радиозащитные средства Радиолиз Радиометрия Радионуклиды Радиопоглощающие и радиопрозрачные материалы Радиопрозрачные материалы Радиоспектроскопия Радиохимическая чистота Радиохимия Радиоэкология Радон Раймера-тимана реакция Райссерта реакция Ракетные топлива Рамановская спектроскопия Рамберга-бэклунда реакция Рамноза Рапсовое масло Расклинивающее давление Распиливание Расплавы Рассеянные элементы Растворение Растворимость Растворители Растворы Растворы неэлектролитов Растворы полимеров Растворы электролитов Растительные масла Расходомеры Расщепление рацематов Раффиноза Рацематы Рацемизация Рашига реакции Рвотные средства Реагенты органические Реадиновые алкалоиды Реактивные топлива Реактивы химические Реактопласты Реакторы химические Реакции в растворах Реакции в твердых телах Реакции химические Реакционная способность Реакционная хроматография Ребиндера эффект Регуляторные белки Регуляторы роста растений Регуляторы ферментов Редкие элементы Редкоземельные элементы Редокс-иониты Редукторные масла Резина Резиновая смесь Резиновые клей Резольные смолы Резонанса теория Резонансное взаимодействие Резорцин Рекомбинация Рекомбинация генетическая Ректификация Релаксационные методы Релаксация Ремантадин Рений Ренийорганические соединения Ренин Рения оксиды Рентгеновская спектроскопия Рентгенография Реология Репарация Репелленты Репликация Реппе реакции Репрография Рестриктазы Ретаболил Ретроионилиденовая перегруппировка Ретросинтетический анализ Реформатского реакция Рефрактометрия Рефракция молярная Рецепторные белки Рибоза Рибонуклеозид-дифосфат-редуктазы Рибосома Рибофлавин Риттера реакция Риформат Риформинг Рицин Рицинолевая кислота Робинсона-манниха реакция Робинсона-шепфа реакция Родамины Роданиды Роданины Родентициды Родий Родийорганические соединения Родионова реакция Родопсин Розенмунда реакция Розеноксйд Росы точка Ротаксаны Ротенон Роторные аппараты Ртути галогениды Ртути оксиды Ртути сульфиды Ртути халькогениды Ртуть Рубеановодородная кислота Рубидий Рубидия галогениды Руда Руле перегруппировка Рутений Рутил Рыжиковое масло Ряд напряжений