Словарь научных терминов

Печи

ПЕЧИ. Промышленные П.-устройства с камерой, огражденной от окружающей среды, предназначенные для получения материалов и изделий при тепловом воздействии на исходные в-ва. Теплота выделяется в результате горения топлива или превращения электрич. (реже солнечной) энергии. Осн. части П.: теплогенератор (источник тепла); рабочая камера, в к-рой находятся материалы или изделия; теплоотборник, служащий для охлаждения изделий после их термич. обработки; устройства для подвода топлива или электрич. энергии, а также для отвода продуктов сгорания; механизмы для загрузки, транспортировки через П. и выгрузки материалов или изделий; система автоматич. управления работой П.; строит. конструкции (фундамент, футеровка для ограждения рабочей камеры от окружающей среды, каркас для обеспечения необходимой прочности и крепления горелок или форсунок, кожух для герметизации П. и обеспечения ее прочности); устройства для утилизации тепла и продуктов сгорания топлива (рекуператоры, регенераторы). В большинстве П. теплогенераторы и теплоот-борники совмещены с рабочей камерой.

Классификация. П. классифицируют по термотехнол., теп-лотехн. и мех. характеристикам, а также с учетом конструктивных особенностей, состояния и Cв-в печной среды (смеси в-в в рабочей камере кроме исходных материалов и целевых продуктов). По термотехнол. признакам П. подразделяют на физические, в к-рых получение продукта основано на целенаправленных физ. превращ. исходных материалов без хим. взаимод. между ними, и химические, в к-рых получение продукта основано на целенаправленных хим. взаимод. между исходными материалами. По характеру течения тер-мотехнол. процесса во времени различают П. периодического и П. непрерывного действия.

По теплотехн. признакам П. подразделяют след. образом. В зависимости от источника тепла выделяют. экзотермич. (или пламенные), электротермич. (или электрич.), оптич. (в т.ч. гелиотермич., или солнечные) и смешанные П. В экзотермических П. источником тепла м. б. исходные материалы, вводимое топливо (газообразное, жидкое либо твердое) или и то и другое одновременно. Электротермические П. подразделяют на П. сопротивления, дуговые, дуговые П. сопротивления, электроннолучевые и индукционные. Различают также П. с теплогенерацией в рабочей камере и вне ее, со встроенными рекуператорами или без них, а также проходные (однократные) и рециркуляционные (многократные), в к-рых газообразный теплоноситель в рабочей камере используется соотв. один или много раз. В зависимости от вида теплообмена выделяют конвекционные, радиационные, кондуктивные и смешанные П.

По мех. признакам П. подразделяются след. образом: по способу транспортировки исходных материалов и полученных продуктов-на конвейерные, роликовые, рольганговые, вагонеточные и др.; по характеру движения газовых потоков в рабочих камерах-на П. с криволинейными (круговыми, циклонными и др.) или прямолинейными потоками; по взаимной ориентации потоков исходных материалов и продуктов-на прямоточные, противоточные и перекрестные.

Различают П. контролируемого и неконтролируемого хим. состава, вакуумные или работающие под давлением. П. бывают с газовой, жидкой, твердой или смешанной печной средой. Последняя состоит из продуктов сгорания топлива, отходов физ. и хим. превращений исходных материалов и из специально вводимых компонентов, необходимых для защиты исходных материалов и продуктов от нежелат. хим. воздействий.

По конструктивным признакам П. подразделяются на шахтные, туннельные, кольцевые, ретортные, муфельные, тигельные, горшковые, ванные, трубчатые, полочные, камерные, вращающиеся, колпачковые, ямные, секционные, многоподовые с пульсирующим или шагающим подом и т.д.

Основные показатели работы П.-производительность, тепловая мощность, кпд. Производительность обычно измеряют кол-вом исходного материала (сырья), проходящего через нее в единицу времени, или кол-вом продукта, получаемого за определенное время, и выражается в т/ч или т/сут. Тепловая мощность, или полезная тепловая нагрузка (иногда наз. также теплопроизводительностью), соответствует кол-ву тепла, воспринимаемого сырьем в П. в единицу времени; выражается в МВт. Кпд показывает, насколько эффективно используется тепло, получаемое при сжигании топлива, и составляет обычно 0,6-0,8.

Процессы, протекающие в П. В рабочей камере одновременно осуществляются термотехнол., теплотехн. и мех. процессы, в к-рых участвуют исходные материалы, продукты, печная среда и футеровка. К мех. процессам относятся перемещение в рабочей камере исходных материалов, продуктов и печной среды, к-рые должны создавать в рабочей камере оптим. условия для осуществления термотехнол. процессов.

Термотехнол. процессы весьма разнообразны. К физ. процессам, в частности, относятся: 1) тепловая активация металлов и сплавов, к-рую проводят, напр., для их подготовки к послед. пластич. деформации (ковке, прокату, волочению и др.); 2) термич. обработка исходных материалов-способ изменения их структуры и Cв-в в заданном направлении путем их нагревания и охлаждения с определенным режимом изменения т-р во времени и по объему П.; напр., отпуск и нормализация стали заключаются в нагреве ее до т-р соотв. ниже нижней критической или выше (на 20-50 0C) верхней критической, выдерживании при этих т-рах и послед. охлаждении, что приводит к повышению пластичности и ударной вязкости стали; 3) плавление исходных материалов, осуществляемое для послед. придания металлам и сплавам заданных форм, получения сплавов и твердых р-ров заданного хим. состава и физ. Cв-в, термич. рафинирования расплавл. металлов, направл. кристаллизации и зонной плавки при выращивании монокристаллов и глубокой очистки металлов и т.д.; 4) испарение исходных материалов, осуществляемое, напр., для селективного разделения расплавов и при первичной переработке нефти; 5) термич. обезвоживание жидких отходов - эффективный способ снижения загрязнения окружающей среды, в результате к-рого получают твердый сухой остаток в виде порошка или гранул.

К хим. термотехнол. процессам относятся, в частности, крекинг, коксование, пиролиз, варка стекла, термохим. рафинирование (очистка от примесей) металлов, возгонка (перевод в-ва из твердого состояния в газообразное, напр. при получении желтого фосфора), термосинтез (получение при высоких т-рах CaC2, CS2 и др.), термич. разложение сложных хим. в-в (используется, напр., при получении кальцинир. соды, техн. углерода), высокотемпературная деструкция углеводородного сырья (напр., для получения из нефти низших олефинов и жидких продуктов пиролиза - бензола, толуола и др.), термич. обезвреживание отходов (распад их на нейтральные к окружающей среде в-ва), а также обжиг, сжигание, выплавка, хим.-термич. обработка металлов.

Обжиг - термич. обработка материалов с целью направл. изменения их физ. Cв-в и хим. состава. При этом исходный материал сначала нагревают до определенной т-ры, выдерживают при ней и затем охлаждают с заданной скоростью. Обжиг применяют для термич. подготовки руд и их концентратов к послед. переработке, для получения конечных хим. продуктов и изделий (ртути, сурьмы, извести, керамики, эмалей, красок и др.). Различают обжиг с получением порошка и обжиг со спеканием.

При обжиге могут протекать процессы дистилляции, пиролиза, диссоциации, синтеза новых соед. из исходных, спекания, кальцинации (напр., разложение NaHCO3) в сочетании с разл. хим. р-циями. По химизму протекающих процессов выделяют неск. видов обжига. Окислит. обжиг применяют для перевода сульфидов металлов в оксиды, иногда с получением окускованного материала (как, напр., при произ-ве меди, цинка, никеля). Окислительно-сулъфа-тизирующий обжиг применяют перед гидрометаллургич. переделом для перевода цветных металлов в р-римые в воде сульфаты, железа-в нерастворимые в воде оксиды. С помощью окислительно-возгоночного обжига из медеэлектро-литных шламов удаляют селен благодаря окислению его до SeO2, к-рый возгоняется. При окислительно-спекающем обжиге медеэлектролитные шламы спекают с содой для перевода селена в водорастворимые селенит и селенат натрия, а теллура-в р-римый в к-тах теллурат натрия. Окислит.-восстановит, обжиг отличается от окислительного введением в шихту нек-рого кол-ва угля, что приводит к образованию летучих низших оксидов и, т. обр., облегчает выделение в газообразном состоянии компонентов, высшие оксиды к-рых слаболетучи.

Восстановит. обжиг применяют для получения металлов или их низших оксидов из высших, напр. MnO из концентрата MnO2. С помощью восстановит. магнетизир. обжига слабомагн. железную руду переводят в искусств. магнетит. Восстановительно-металлизирующим обжигом получают губчатое железо и железные порошки, восстановительно-дистилляционным - сурьму. Восстановительно-сульфатизи-рующий обжиг служит для переработки бедных никель-кобальтовых руд, восстановительно-хлорирующий обжиг-для облегчения извлечения Ti, Nb и Cu из никелевых концентратов (обжиг производится в присут. газообразного хлора). Восстановительно-хлорирующий сегрегац. обжиг осуществляют в присут. твердого восстановителя с добавкой хлоридов Na и Ca и используют для подготовки труднообогатимых руд цветных металлов к флотации или магн. сепарации.

Хлорирующий обжиг применяют для перевода ценных компонентов руды в легкорастворимые или легколетучие хлориды (напр., при произ-ве титана и циркония). В результате декарбонизир. обжига удаляют карбонаты Ca, Mo, Ba (напр., при обжиге известняка, доломита, магнезита, фосфорита). Кальцинирующий обжиг применяют для удаления конституц. влаги и CO2 (при произ-ве соды, извести и т. д.). Дистилляц. обжиг-отгонка в парообразном состоянии из руды или ее концентратов ценных составляющих (напр., Sb, Hg, As), к-рые затем конденсируют.

Обжиг проводят для получения минер. вяжущих в-в (портландцемента, высокообжигового гипса и др.), искусств. пористых заполнителей (керамзита, вспученного перлита, аглопирита и др.). Иногда обжиг совмещают со спеканием руды или концентрата с активными добавками (сода, мел и т. д.) или компонентами шихты (обжиг с окускованием) для облегчения послед. обработки.

Сжигание-процесс горения исходных горючих материалов для получения новых продуктов или освобождения хим. энергии. В П. сжигают сероводород, серу, фосфор, ацетилен, уголь, мазут, пропан, бутан, прир. газ и др.

Выплавка металлов-процесс получения металлов из руд и шихт, основанный на полном их расплавлении и разделении расплава. Таким образом получают сталь, чугун, никель, кобальт, свинец, черновые медь и кадмий, олово, сурьму и др. (см. Металлургия).

Хим.-термич. обработка металлов-процесс диффузионного насыщения пов-сти металла разл. хим. в-вами при повыш. т-рах для придания металлам повыш. износостойкости, жаростойкости, коррозионной стойкости, уста-лостной прочности и др. св-в.

При хим. превращениях исходных материалов в П. наряду с целевыми продуктами образуются твердые, жидкие и газообразные отходы, нек-рые из к-рых экологически вредны. Эти отходы перерабатывают на новые полезные продукты или подвергают хим. либо термич. обезвреживанию в других П. Термотехнол. процессы, приводящие к появлению экологически вредных реакц. газов, необходимо осуществлять так, чтобы эти газы не контактировали с дымовыми газами, получаемыми при сжигании топлива.

Конструкции П. В зависимости от целей и характера термотехнол. процессов конструкции П. имеют свои особенности. В качестве примера на рис. 1 приведена схема герметизированной электрической ванной П., предназначенной для получения желтого фосфора. Она имеет круглую форму и футерована углеграфитными блоками, а верх. часть стенки - шамотными кирпичами. Осн. конструктивный элемент этой П.-ванна 6. В ней осуществляются превращ. исходных материалов и получается желтый фосфор, к-рый возгоняется и выводится из П. В боковых стенках ванны установлены летки 10 для выпуска шлака и феррофосфора. Ванна заключена в металлич. кожух 4, к-рый обеспечивает ее мех. прочность и герметичность. Ванна сверху закрывается сводом 8 из жаропрочного железобетона; на своде установлена электроизоляц. газонепроницаемая металлич. крышка 3. На своде и крышке имеются отверстия для прохода электродов 7, течек (отверстий) 2 для подачи исходных материалов и отводов газообразных продуктов. Передача электроэнергии электродам, удерживание, регулирование их положения в ванне осуществляется с помощью электрододержателей 1. П. непрерывно охлаждается водой.

https://www.medpulse.ru/image/encyclopedia/7/5/1/10751.jpeg

Рис. 1. Электрич. руднотермич. печь для получения фосфора: 1 -электрододер-жатель; 2-течки; 3-крышка; 4-кожух ванны; 5-водоохлаждение ванны; 6-ванна; 7-электроды; 8-свод; 9 - трансформатор; 10-летка.

https://www.medpulse.ru/image/encyclopedia/7/5/2/10752.jpeg

Рис. 2. Вращающаяся печь: 1-откатная головка; 2-горелка; 3-барабан; 4-бандаж; 5-венцовая шестерня; 6-пыльная камера; 7-наклонная течка; 8-опорная станция; 9-опорно-упорная станция; 10-механизм привода.


На рис. 2 приведена схема вращающейся П., в к-рой осуществляется обжиг сыпучих материалов (шамота, магнезита, доломита, керамзита, боксита, марганцевой, цинковой и др. руд, киновари и т.д.). Эта П. имеет цилиндрич. рабочую камеру - барабан 3, выполненный из огнеупорного кирпича и заключенный в стальной корпус, на к-ром установлены бандажы 4 и венцовая шестерня 5. Бандажами П. устанавливается на упорные и опорные ролики, к-рые смонтированы на металлич. рамах и находятся на бетонном фундаменте (опорно-упорная станция 9). Загрузка исходного м
атериала производится по наклонной течке 7, расположенной в пыльной камере 6, а разгрузка осуществляется через откатную головку 1, в к-рой установлена горелка (или форсунка) 2 для сжигания топлива. Перемещение исходного материала вдоль продольной оси П. осуществляется благодаря вращению корпуса, установленного под углом 2-4° к горизонту. Во вращение П. приводится спец. механизмом привода 10. В месте соединения корпуса П. с пыльной камерой и откатной головкой установлены уплотняющие устройства. В рабочей камере нек-рых П. имеются внутри-печные теплообменники для интенсификации обжига. В нашей стране эксплуатируются вращающиеся П. диаметром от 1 до 7 м и длиной от 12 до 230 м.

На рис. 3 приведена схема многоподовой П., предназначенной для обжига сыпучих материалов (сульфидов металлов, магнезита, извести, золото- и серебросодержащих руд и т.д.). Она выполнена из огнеупорных и теплоизоляц. материалов; снаружи заключена в стальной кожух. Топливом в ней может служить мазут или прир. газ. Рабочая камера имеет форму вертикального цилиндра, разделенного горизонтально расположенными подами 1 на неск. кольцевых реакц. камер с разл. температурными режимами. На подах имеются отверстия 2, расположенные попеременно на периферии или в центре, для пропускания исходного материала и печных газов. Перемещение по подам с одноврем. перемешиванием обжигаемого материала осуществляется перегребающим устройством, состоящим из центрального пустотелого вала 6 и закрепленных в нем рукояток с гребками 5 (мех. мешалками). Центральный вал и рукоятки охлаждаются воздухом, подаваемым от вентилятора 7. Этот воздух затем м. б. использован для сжигания топлива. Перегребающее устройство приводится во вращение механизмом привода 8, состоящим из электромотора и спец. редуктора, расположенного под П.

https://www.medpulse.ru/image/encyclopedia/7/5/3/10753.jpeg

Исходный материал загружают на верх. под через шнек 4 и гребками перемещают до отверстия на нем, через к-рое он подается вниз-на след. под, совершая сложный зигзагообразный путь по всем подам, и выгружается внизу П. На нек-рых кольцевых камерах снаружи П. установлены горелки 10 для сжигания газообразного топлива (топливного газа), полученные дымовые газы в смеси с газами, к-рые выделяются при протекании термотехнол. процессов, являются теплоносителями, движутся по рабочим камерам вверх и выводятся из П. Мазутное топливо сжигается в спец. отдельно стоящей топке 9, и образовавшиеся газы по футеров. трубе подаются в П. Диаметр промышленных П. обычно 1,6-6,8 м, число подов 4-16, общая пов-сть подов составляет 6,5-370 м2.

https://www.medpulse.ru/image/encyclopedia/7/5/4/10754.jpeg

Доменная шахтная П. (рис. 4) предназначена для выплавки чугуна из железных руд. Главный термотехнол. процесс в ней восстановление оксидов железа. Осн. частями П. являются колошник 1, шахта 2, распар 3, заплечники 4, горн 5, лещадь (основание, или дно, горна) и железобетонный фундамент 22. Через спец. засыпной аппарат 6 в колошник загружают исходные шихтовые материалы и отводят образующиеся газы. Ниже колошника расположена шахта конич. формы, в к-рой материалы нагреваются, увеличиваются в объеме и опускаются вниз под действием собств. веса. Распар наиб. широкая цилиндрич. часть П., соединяющая шахту с заплечниками. В заплечниках происходит выгорание кокса и образование жидких продуктов плавки, т.е. уменьшение объема находящихся в П. B-B. Ниж. часть П.-горн делится на две зоны: верхнюю-фурменную, в к-рой установлены фурмы 9 для вдувания горячего воздуха (дутья) и топлива (прир. газа, мазута и др.), и нижнюю металлоприемник, где накапливаются жидкий чугун и шлак и затем выпускаются через летки 10, 11 по желобам 21 в ковш. Изнутри П. футерована высококачеств. огнеупорными материалами и заключена в стальной кожух 16. Для предохранения от разрушения футеровка охлаждается металлич. холодильниками 17 и 18, по к-рым постоянно циркулирует вода. 0 oC

В нефтехим. и нефтеперерабатывающей пром-сти наиб. широко используются трубчатые П. Они предназначены для огневого нагрева (до 300 0C), испарения и перегрева (при 300-500 oC) газообразных и жидких сред, а также для проведения высокотемпературных процессов деструкции углеводородного сырья (при т-ре ~ 900 0C). Соответственно различают нагревательные (применяемые, напр., для произ-ва масел), нагревательно-испарительные (для первичной переработки нефти) и нагревательно-испарительно-реак-ционные (применяемые для получения низших олефинов, бензола, толуола и др.) трубчатые П

Осн. элемент этих П. трубчатый змеевик, в к-ром движется нагреваемая среда (исходный материал). Змеевик изготовляют из жаропрочных труб диаметром 57-426 мм. длиной до 24 м и толщиной стенок 4-22 мм; пов-сть нагрева составляет 15-2000 м2.

Подавляющее большинство трубчатых П. имеют две камеры конвекционную (или конвективную) и радиационную (или радиантную), и называются радиационно-конвекцион-ными, или радиантно-конвективными. Обычно исходный материал поступает сначала в конвекц. камеру, где он нагревается вследствие конвекции, а затем в змеевик радиац. камеры, к-рый обогревается спец. горелками. Трубчатые П. могут быть разной формы-коробчатые, широко- и узкокамерные, цилиндрические, кольцевые, секционные, одно- и многокамерные. Змеевики в них бывают горизонтальные, вертикальные, винтовые и коллекторные. Конвекц. камеры размещаются относительно радиац. камеры сверху, снизу, сбоку или в середине. Трубчатые П. различаются также положением горелок для жидкого и газообразного топлива или устройств для сжигания твердого топлива (боковое, настенное, подовое, сводное и т.д.), отводом продуктов сгорания топлива (дымовых газов) из П., числом радиац. и конвекц. камер, видом огнеупорной обмуровки и теплоизоляции (огнеупорный шамотный кирпич, блочный жаропрочный бетон, легковесные шамотноволокнистые плиты и т. д.).

Важнейшими показателями работы трубчатых П. кроме тепловой мощности, производительности по сырью и кпд являются теплонапряженность пов-сти нагрева, гидравлич. потери напора потоков сырья в трубчатом змеевике. Тепло-напряженность пов-сти нагрева характеризует, насколько эффективно используются трубчатые змеевики для нагрева сырья, и определяется кол-вом тепла, передаваемым через 1 м2 пов-сти змеевика за 1 ч. Гидравлич. потери напора в змеевике зависят от скорости движения сырья, вязкости, длины печных труб, их диаметра, чистоты внутр. пов-сти, сопротивлений в местах соединения труб. При деструктивной переработке нефтяного сырья жестко устанавливаются такие параметры, как т-ра, давление, время контакта (время пребывания сырья в змеевике). Производительность трубчатых П. в случае переработки нефти при атм. давлении достигает 8000 т/сут, кпд-92%; допускаемая теплонапряженность для нагревательных и нагревательно-испаритель-но-реакционных трубчатых П. составляет 17-58 и 80 кВт/м2 соотв.; тепловая мощность варьирует от 0,12 до 250 МВт. Трубчатые П. большой мощности обладают рядом преимуществ по сравнению с печами малой мощности: относительно небольшие капиталовложения, простота техн. обслуживания, лучшие техн.-экономич. показатели, компактность, низкая материалоемкость и т.д.

Усовершенствование конструкций трубчатых П. для деструктивной переработки нефтяного сырья в нефтехим. пром-сти имеет целью увеличение выхода продуктов при миним. расходе сырья и топливно-энергетич. ресурсов, повышение работоспособности и долговечности материального оформления, организацию автоматич. управления режимом работы. Один из путей - уменьшение длины и диаметра печных труб и изменение геометрии трубчатых змеевиков, что позволяет уменьшить время пребывания сырья в реакц. зоне, благодаря чему возрастает селективность процессов пиролиза и выход целевых продуктов.

В нефтеперерабатывающей и нефтехим. пром-сти используют трубчатые П. разл. конструкций. В качестве примера на рис. 5 приведена схема радиационно-конвекционной трубчатой П. нефтеперерабатывающей установки. П. состоит из радиац. камеры 5, футерованной легковесным жаростойким бетоном, цельносварного трубчатого змеевика 6, подовой горелки 7 для жидкого или газообразного топлива. Верх. расположение конвекц. камеры 1 и дымовой трубы 8 обеспечивает прямоточное удаление продуктов сгорания топлива с миним. гидравлич. потерями напора в змеевике.

https://www.medpulse.ru/image/encyclopedia/7/5/5/10755.jpeg

https://www.medpulse.ru/image/encyclopedia/7/5/6/10756.jpeg

Узкокамерная нагревательно-реакц. трубчатая П. для произ-ва этилена из нефтяного сырья (рис. 6) состоит из двух самостоят. отсеков-радиационной (1) и конвекционной (2) камер, объединенных одной дымовой трубой 4. Топливная система оснащена настенными акустич. газовыми горелками 5, обогревающими стенки топки и равномерно излучающими тепло на пирозмееви-ки 3. Кол-во топливного газа (и, следовательно, т-ра пиролиза) регулируется спец. клапанами 7, что позволяет экономно расходовать топливо, сократить вредные выбросы в атмосферу, упростить техн. обслуживание, увеличить долговечность материальной части. Исходный материал поступает в конвекц. камеру, где нагревается до 500-550 0C, затем-в радиац. камеру, где происходит пиролиз при 800-850 0C, и выходит из П. в за-калочно-испарит. аппарат (ЗИА) 10, служащий для охлаждения газов пиролиза и выработки водяного пара.

Схема печного агрегата установки миллисекундного пиролиза углеводородного сырья для произ-ва низших олефинов приведена на рис. 7. Время контакта в зоне р-ции составляет 0,05-0,1 с, что позволяет вести процесс при 900-930 0C. Это обеспечивает достаточную селективность и высокий выход целевых продуктов. Исходное сырье поступает в конвекц. камеру 1 для подогрева, а затем-в радиац. камеру 2 через два автономных коллектора, расположенных в поду топки (на рис. не показаны). Эти коллекторы соединены с трубчатым змеевиком 3, представляющим собой ряд прямых вертикальных трубок, в к-рых происходит пиролиз. На выходе из агрегата оба потока объединяются и поступают в ЗИА. Обогрев в П. осуществляется подовыми горелками, пламя к-рых направлено на стены топки, излучающие равномерный тепловой поток на реакц. трубки.

Для хим. и физ.-хим. исследований и анализа, а также в препаративных целях широко используют лабораторные П. Большинство из них представляют собой электрические П. сопротивления. Они снабжены регулирующими устройствами, позволяющими выдерживать образцы при разл. режимах изменения т-ры, и контрольно-измерит. приборами для наблюдения за ходом процессов.

https://www.medpulse.ru/image/encyclopedia/7/5/7/10757.jpeg

Лабораторные П. разнообразны по своим конструкциям; имеются, напр., П. с вращающимся барабаном, с кипящим слоем (КС; источником тепла в них м. б. топливо), П. с муфелем (т.е. с замкнутой камерой из шамота, керамики или др. огнеупорного материала, в к-рую помещают нагреваемое в-во). В зависимости от формы муфеля различают тигельные, трубчатые и шахтные П. Т-ра в муфельной П. обычно составляет 1000-1200 0C, но может достигать и 1450 0C.

В качестве примера на рис. 8 приведена схема муфельной электропечи сопротивления для нагрева до 1000 0C. Ее прямоугольный корпус 7 выполнен из тонколистовой стали, в верх. части находится камера нагрева 6, в ниж. части-блок управления 5. В центре камеры нагрева размещен керамич. муфель 8, на к-рый намотан нагреват. элемент 9. Внутр. пов-сть муфеля образует рабочее пространство электропечи. Через отверстие 14 в задней части муфеля в рабочее пространство вводят регулирующую термопару. Пространство между муфелем и корпусом камеры нагрева заполнено теплоизоляцией 10. Загрузка электропечи производится через проем, закрываемый дверцей 12 с отверстием 13 для ввода контрольной термопары. Блок управления 5 электропечи служит для автоматич. поддержания заданной т-ры.

Лит.: Исламов M. Ш., Печи химической промышленности, 2 изд., Л., 1975; его же. Проектирование и эксплуатация промышленных печей, Л., 1986; Ентус H. Р., Шарихин В. В., Трубчатые печи в нефтеперерабатывающей и нефтехимической промышленности, M., 1987. M. UI. Исламов, H. P. Ентус.


5-пиразолон B-пропиолактон L-пеницилламин Пааля-кнорра реакция Палеобиогеохимия Палладий Пальмитиновая кислота Пальмовое масло Пантотеновая кислота Папаверин Папайн Пара Паральдегид Парамагнетики Параметры состояния Паратгормон Парафин Парафины Параформальдегид Парофазный анализ Парфюмерные масла Пассерини реакция Пассивность металлов Патерно- бюхи реакция Паули принцип Паули реакция Пек древесный Пек каменноугольный Пектины Пеларгоновая кислота Пенициллины Пенная сепарация Пенопласты Пенопласты интегральные Пенополивинилхлориды Пенополиолефины Пенополистиролы Пенополиуретаны Пеностекло Пенофенопласты Пентанолы Пентаны Пентапласт Пентафенилфосфоран Пентафталевые смолы Пентафтор-2-азапропен Пентафторанилин Пентафторфенол Пентафторхлорбензол Пентаэритрит Пентены Пентозофосфатный цикл Пентозы Пены Пептидные алкалоиды Пептидные антибиотики Пептидогликаны Пептизация Первое начало термодинамики Переалкилирование Переаминирование Перегалогенирование Перегонка Перегруппировки молекулярные Перемешивание Перенапряжение электрохимическое Перенитрилирование Переноса процессы Переноса числа Переходные элементы Переэтерификация Пери Перилен Перилловое масло Перимидин Периноновые красители Период индукции Перитектика Перициклические реакции Перкина реакция Перкова реакция Перколяционная очистка Пермаллой Перманганатометрия Перманганаты Перовскит Пероксидазы Пероксидные Пероксинитраты Пероксобораты Пероксокислоты Персоль Перфторалкановые кислоты Перфторалкансульфокислоты Перфторалкилиодиды Перфтордекалин Перфторизобутилен Перфторкарбоновые кислоты Перфторнитрозоизобутан Перфторолефинов окиси Перфторполиэфиры Перфторциклобутан Перфторциклобутанон Перфторциклобутен Перхлораты Перхлорвиниловые лаки Перхлорвиниловые смолы Перхлорэтилен Пестицидные препараты Пестициды Петролатум Петролейный эфир Петрохимия Печатание тканей Печи Пигменты Пиколиновая кислота Пиколины Пикраты Пикриновая кислота Пикте шпенглера реакция Пилокарпин Пинаконы Пиндолол Пинены Пиннера реакции Пиперазин Пиперидин Пиперидолы Пиперилен Пиперитон Пиразидол Пиразин Пиразол Пирамидальная инверсия Пираны Пирацетам Пирен Пиретрины Пиретроиды Пиридазин Пиридилазонафтол Пиридилазорезорцин Пиридин Пиридиния соли Пиридиновые алкалоиды Пиридоны Пирилия соли Пиримидин Пиримидиновые основания Пирит Пиро... Пиробензол Пировиноградная кислота Пирогаллол Пирогенетическая вода Пирогидролиз Пирокатехин Пирокатехиновый фиолетовый Пироксилин Пиролиз Пиролиз древесины Пиролиз нефтяного сырья Пиромеллитовая кислота Пиромеллитовый диангидрид Пирометаллургия Пирометры Пироны Пиротехнические составы Пирофорное вещество Пирофосфаты неорганические Пирофосфаты органические Пирохлоры Пироэлектрики Пиррол Пирролидин Пирролизидин Пирролизидиновые алкалоиды Пируваткарбоксилаза Питатели Питтинговая коррозия Пищимуки реакция Плавиковая кислота Плавиковый шпат Плавкости диаграмма Плавление Плазма Плазмалогены Плазмида Плазмин Плазмохимическая технология Плазмохимия Планарная технология Планирование эксперимента Планка постоянная Пластбетон Пластизоли Пластикат Пластикация полимеров Пластики Пластификаторы Пластификация полимеров Пластические массы Пластичность Пластичные смазки Пластмассы Платина Платиновые металлы Платформинг Плацентарный лактоген Пленки полимерные Пленкообразователи Плотная упаковка Плотномеры Плутоний Плутония карбиды Плутония нитрид Плюроники Плёночные аппараты Пневмо- и гидротранспорт Пневмоформование полимеров Поверхностная активность Поверхностная энергия Поверхностное натяжение Поверхностные явления Поворотная изомерия Погрешность анализа Подвулканизация Подземная коррозия Подобия теория Подсмольная вода Подсолнечное масло Пожарная опасность Позитивный процесс Позитрон Позитроний Полевые шпаты Полезные ископаемые Поли(ароилен-бис-бензимидазолы) Поли-2,6-диметил-n-фениленоксид Поли-4-метил-1-пентен Поли-n-бензамид Поли-n-ксилилены Поли-n-фенилентерефталамид Поли-м-фениленизофталамид Поли-[3,3-бис-(хлорметил)оксетан] Поли-n-винилкарбазол Поли-n-винилпирролидон Поли-е-капроамид Полиакриламид Полиакрилаты Полиакриловая кислота Полиакриловые лаки Полиакрилонитрил Полиалломеры Полиамидные волокна Полиамидные плёнки Полиамидокислоты Полиамиды Полиамины Полиамфолиты Полиангидриды Полиарилаты Полиацетали Полиацетилен Полибензимидазолы Полибензоксазолы Полибензотиазолы Полибутен Полибутилентерефталат Поливинилketаль Поливинилацетали Поливинилацетат Поливинилбутиловый эфир Поливинилбутираль Поливинилены Поливинилиденфторид Поливинилиденхлорид Поливиниловые эфиры Поливиниловый спирт Поливинилпиридины Поливинилспиртовые волокна Поливинилстеарат Поливинилформаль Поливинилформальэтилаль Поливинилфторид Поливинилхлорид Поливинилхлорид хлорированный Поливинилхлоридные волокна Поливинилхлоридные пленки Поливинилэтилаль Полигалогениды Полигексаметиленадипинамид Полигексаметиленгуанидин Полигексаметиленсебацинамид Полигетероарилены Полигидразиды Полигидроксиамиды Полидезоксирибонуклеотид-синтетазы Полидодеканамид Полиеновые антибиотики Полиены Полиизобутилен Полиизопрен Полиимидные пленки Полиимиды Полиины Поликарбонатные плёнки Поликарбонаты Поликонденсация Поликонденсация в расплаве Поликонденсация в растворе Поликоординация Поликристаллы Полилактид Полимер-полимерные комплексы Полимераналогичные превращения Полимербетон Полимергомологи Полимеризация Полимеризация в растворе Полимеризация на наполнителях Полимерные гидрогели Полимерные красители Полимерные материалы Полимерцемёнт Полимеры Полиметакрилаты Полиметакриловая кислота Полиметаллоорганосилоксаны Полиметиленоксид Полиметилметакрилат Полиметиновые красители Полиметины Полиморфизм Полимочевины Полинозные волокна Полиоксадиазолы Полиоксиметилён Полиоксипропилён Полиоксиэтилен Полиоксиэтиленалканоаты Полиоксиэтиленалкиламины Полиолефиновые волокна Полиолефиновые плёнки Полиолефины Полиорганосилазаны Полиорганосиланы Полиорганосилоксаны Полипептиды Полипиромеллитимиды Полиприсоединёние Полипропилен Полипропилен хлорированный Полипропиленовые волокна Полипропиленовые плёнки Полипропиленоксид Полирекомбинация Полирование Полироли Полисахариды Полистирол Полистирол ударопрочный Полистирольные плёнки Полисульфидные каучуки Полисульфиды неорганические Полисульфйды органические Полисульфоны Политетраметиленадипинамид Политетрафторэтилен Политионаты Политипизм Политонные перегруппировки Политриазолы Политрифторхлорэтилен Полиуретанмочевины Полиуретановые волокна Полиуретановые лаки Полиуретановые эластомеры Полиуретаны Полифениленоксиды Полифенилены Полиформальдегид Полифосфазены Полифтор- Полифторкетоны Полихиноксалины Полициклизация Полиэдрические соединения Полиэлектролиты Полиэтерификация Полиэтилен Полиэтилен хлорированный Полиэтилен хлорсульфированный Полиэтиленгликоли Полиэтиленимин Полиэтиленовые волокна Полиэтиленовые плёнки Полиэтиленоксид Полиэтиленполиамины Полиэтилентерефталат Полиэфирные волокна Полиэфирные лаки Полиэфирные смолы Полиэфируретаны Полиэфиры простые Полиэфиры сложные Полиядерные соединения Полоний Полоновского реакция Полукоксование Полуметаллы Полупроводники Полупроводниковые материалы Полуцеллюлоза Полуэмпирические методы Поля лигандов теория Поляризация Поляризуемость Поляримётрйя Полярные молекулы Полярография Пористая резина Пористое стекло Пористость Порообразователи Поропласты Порофоры Пороха Порошки Порошковая металлургия Порошковые краски Портландцемент Порфирины Порядок реакции Постоянная авогардо Постоянная больцмана Постоянная планка Поташ Потенциал ионизации Потенциал нулевого заряда Потенциал оседания Потенциал течения Потенциометрия Празеодим Превореакция Прегля методы Предельные углеводороды Предиссоциация Преднизолон Прелога правило Премиксы Препарированные смолы Препрёги Прессование полимеров Пресспорошкй Преципитат Приборные масла Приведенные параметры Привитые сополимеры Пригожина теорема Прилежаева реакция Принса реакция Приработочные масла Природные волокна Присадки к топливам Присоединения реакции Проба аналитическая Пробирный анализ Проектирование Произведение активностей Произведение растворимости Производство энтропии Проксамины Проксанолы Пролактин Проламины Пролин Промедол Прометий Промоторы Проназа комплекс Пропан Пропаргиловый спирт Пропелленты Пропен Пропиламины Пропилен Пропиленгликоли Пропиленкарбонат Пропиленоксид Пропиленоксидный каучук Пропиленсульфид Пропиловый спирт Пропин Пропиоловая кислота Пропионовая кислота Пропионовый альдегид Пропиофенон Проспидин Простагландины Пространственная изомерия Простые эфиры Протактиний Протеогликаны Протеолитические ферменты Противовирусные средства Противовуалирующие вещества Противогазы Противоглистные средства Противоградовые составы Противогрибковые средства Противокашлевые средства Противомикробные средства Противоопухолевые средства Противопротозойные средства Противостарители Противосудорожные средства Противоутомители Протий Протон Протонирование Протравители семян Протравные красители Протромбиновый комплекс Прочность Прямые красители Псевдовращение Псевдокумол Псевдоожижение Псевдоожиженный электрод Псевдооснования Психостимулирующие срёдсгва Психотропные средства Птеридин Пулегон Пульсационные аппараты Пуммерера перегруппировка Пурин Пуриновые алкалоиды Пуриновые антибиотики Пуриновые основания Пфицнера-моффатта реакция Пчелиный воск Пшорра синтез Пылемеры Пылеулавливание Пыли Пьезоэлектрики Пятновыводители Фотометрия пламени эмиссионная