Словарь научных терминов
Пенопласты

ПЕНОПЛАСТЫ (вспененные или ячеистые пластмассы, газонаполненные полимеры), композиц. материалы с каркасом (матрицей) из полимерных пленок, образующих стенки и ребра ячеек (пор), заполненных газом (преим. воздухом). Последние могут иметь сферич., эллиптич., полиэдрич. или др. форму. По физ. структуре П. аналогичны древесине, искусств. и натуральной коже, туфам, пористым керамич. и т.п. материалам. Объемное соотношение газовой и полимерной фаз в П. составляет обычно от 30: 1 до 1:10.

Вспененные пластмассы, содержащие преим. автономные (закрытые) ячейки, наз. собственно П. (замкнутоячеистые П.), в отличие от поропластов-материалов, в к-рых преобладают сообщающиеся (открытые) ячейки или тупиковые капилляры-поры (открытопористые П.). Типичные представители замкнутоячеистых П.-пластики с полым сферич. наполнителем, т. наз. синтактные (синтактичные) П., или сферопласты. Полностью открытопористую структуру имеют сетчатые (ретикулированные) П., в к-рых дополнит. вскрытие ячеек достигается в результате разрушения их стенок выщелачиванием, направленным взрывом и др. спец. приемами.

П. с модулем упругости выше 1000 МПа относят к эластичным, ниже 100 МПа-к жестким (полужесткие П. занимают промежут. положение). В особую категорию выделяют пенопласты интегральные.

П. получены из большинства известных полимеров. Основу пром, ассортимента П. составляют пенополиуретаны, пе-нополистиролы, пенополивинилхлориды, пенополиолефины, пе-нофенопласты, карбамидо-формальдегидные пенопласты. Освоены также в пром. масштабе П. на основе полиамидов, полиимидов, поликарбонатов, модифицир. полифениленок-сида, поливинилформаля, эфиров целлюлозы, эпоксидных и ненасыщ. полиэфирных смол, полиизоциануратов, поликар-бодиимидов, а также CK (см. Пористая резина).

В исходный олигомер или полимер вводят обычно неск. добавок, способствующих получению П. заданного качества. Это могут быть жидкий, твердый и (или) газообразный порообразователъ (вспенивающий агент), ПАВ, катализатор, ускоритель или ингибитор протекающих хим. р-ций, сшивающий агент, антиоксидант, светостабилизатор, антиста-тик, наполнитель (усиливающий, токопроводящий или др.), пластификатор, разбавитель, краситель или пигмент, мономерный или полимерный модификатор и др. Создаются комбинированные П. из смесей полимеров, в т. ч. с керамич. порошком, цементом, р-римым стеклом, измельченными отходами древесины.

Добавки вводят чаще всего в готовый полимер (олигомер), реже-на стадии его синтеза.

Получение. Независимо от типа и агрегатного состояния исходного олигомера или полимера в процессе произ-ва любого П. выделяют 3 осн. стадии: 1) смешение (в один или неск. приемов) составных компонентов (компаундированяе); 2) газонаполнение с вспениванием или без него (ключевая стадия, определяющая принципиальную технол. схему процесса); 3) фиксация (стабилизация) полученной микро-и макроструктуры П. Формование П. и изделий из них производят преим. в ходе вспенивания, реже-после завершения этой стадии. Возможности техн. реализации упомянутых стадий обширны даже для однотипных полимеров, что обусловило многообразие вариантов технологии и аппаратурного оформления действующих произ-в П.-периодич. или непрерывных, часто оснащенных автоматич. управлением.

Вспенивают (с увеличением объема в 2-300 раз) р-ры, дисперсии, эмульсии, расплавы олигомеров и (или) линейных и сшитых полимеров, а также термопласты в размягченном состоянии. Процесс ведут в открытой ("свободное" вспенивание) или в замкнутой ("стесненное" вспенивание) формующей полости. В результате газового пересыщения в системе зарождаются "первичные" пузырьки газа, к-рые увеличиваются в объеме и статистически распределяются в полимерной матрице, находящейся в вязкотекучем состоянии и способной к упругопластич. деформациям.

Фиксация образовавшейся ячеистой структуры достигается быстрым охлаждением (преим. термопластов) и (или) хим. или физ. сшиванием полимера.

Вспенивание осуществляют твердыми (т. наз. порофора-ми) или жидкими порообразователями (газообразователя-ми), напр. хладонами, пентаном, CH2Cl2 и т.п. При повышении т-ры в результате внеш. подогрева или протекания во вспениваемой системе экзотсрмич. р-ций порробразователи начинают интенсивно испаряться. Этот же эффект достигается и при уменьшении давления в системе. Подобные легкокипящие порообразователи часто вводят уже на стадии синтеза термопластичных полимеров с целью получения полимерных частиц, способных увеличиваться в объеме при т-ре, превышающей т-ру размягчения полимера.

Полимеры вспенивают и непосредственно газами. При этом р-р или расплав полимера насыщают под давлением N2, CO2, реже др. газом, к-рый при резком понижении давления высвобождается вследствие уменьшения р-римос-ти и вспенивает систему. В присут. подходящего ПАВ возможен непосредственный "захват" воздуха или др. газа жидкой фазой при интенсивном ее мех. перемешивании и (или) пневматич. продавливании через набор сит-сеток. Полученную пластичную пену фиксируют (отверждают) до начала ее разрушения (коалесценции).

Универсален способ вспенивания газами, образующимися при термич., каталитич. или др. разложении твердых поро-образователей, а также при хим. р-ции их с к.-л. ингредиентом вспениваемой композиции. Так, толуилендиизоцианат и др. орг. изоцианаты, реагируя с водой, выделяют CO2; порошки Al, Zn, Fe при взаимод. с сильными к-тами выделяют H2, и т.п.

Осн. требование при выборе порообразователя - обеспечение оптим. синхронизации между скоростями вспенивания и стабилизации (фиксации) образующейся ячеистой структуры П. При чрезмерно быстром вспенивании П. дают усадку, а преждеврем. потеря текучести чревата неполным заполнением формы пенистой массой и возникновением в готовом П. внутр. напряжений, проявляющихся в растрескивании П. В обоих случаях неизбежны дефекты ячеистой структуры: каверны, неправильной формы раковины, "рваные" поры, разноплотность по объему. Указанные порообразователи берут обычно в кол-ве 0,5-10% от массы полимера. При выборе порообразователей необходимо учитывать, что т-ра вспенивания термопласта даже при повышении давления не должна превышать его т-ру стеклования более чем на 50 0C.

Меньшее развитие получило газонаполнение без вспенивания, используемое в осн. для получения поропластоз из порошкообразных композиций, содержащих добавки в-в, впоследствии удаляемых из сформированных материалов-заготовок экстрагированием подходящим р-рителем, вы-плавлснием, сублимацией, селективной деструкцией. Этот длительный и трудоемкий метод применяют при получении пористых структур из фторопластов и термостойких полимеров, а также при формовании микропористых разделит, мембран и искусств. кожи. Без вспенивания получают также синтактичные П., вводя в жидкое полимерное связующее (напр., в эпоксидные или полиэфирные смолы, полиуретаны) полые микро- или макросферич. наполнители, а затем отвсрждая матричный полимер. Твердая фаза в синтактич-ных П. состоит, помимо полимера, из углерода, стекла, керамики или др. неорг. материалов, из к-рых изготовлены сферич. наполнители.

В целом при формовании П. и изделий из них применяют традиц. методы переработки полимерных материалов (см. Полимерных материалов переработка). Специфич. требование к перерабатывающему оборудованию: высокая герметизация для удержания вспенивающего газа, давление к-рого может достигать нсск. атмосфер.

П. можно, напр., резать, сверлить обычными деревообрабатывающими инструментами, склеивать клеями, обычно применяемыми для полимеров, соответствующих полимеру матрицы.

Свойства П. во многом определяются типом полимера-основы, относительным содержанием твердой и газовой фаз, параметрами морфологич. структуры (формой, размером, строением и ориентацией ячеек). Эти же факторы влияют на характер деформации и механизм разрушения П. под действием статич. или динамич. нагрузок. С увеличением степени сшивания полимера возрастают http://www.medpulse.ru/image/encyclopedia/4/1/4/10414.jpeg, модуль упругости, формоустойчивость при повыш. т-рах, но уменьшается относит, удлинение и ухудшаются эластич. св-ва П. Для многих П., полученных "свободным" вспениванием, характерна анизотропия св-в; так, http://www.medpulse.ru/image/encyclopedia/4/1/5/10415.jpeg и http://www.medpulse.ru/image/encyclopedia/4/1/6/10416.jpeg могут быть на 20-40% больше вдоль направления течения композиции при вспенивании, чем в перпендикулярном к нему направлении.

По уд. мех. прочности и жесткости интегральные П. намного превосходят соответствующие монолитные (невспененные) аналоги, поэтому замена последних на П. может обеспечить экономию до 50% полимера. Прочностные показатели интегральных П. зависят от св-в и толщины поверхностной корки; на ударопрочность заметно влияют жесткость сердцевины и размер ее ячеек.

По теплоизоляц. св-вам П. превосходят традиц. теплои-золирующие материалы. Миним. коэф. теплопроводности [менее 0,02 Вт/(м·К)] имеют П. с кажущейся плотн. 0,035b0,015 г/см3 и замкнутыми ячейками, заполненными хла-доном. При криогенных т-рах возрастает роль морфологич. факторов.

Способность П. поглощать вибрацию и звук, сорбировать водные пары и жидкости возрастает с увеличением уд. доли открытых ячеек. Гигроскопичность и водопоглощение зависят также от степени гидрофильности полимера. По сравнению с поропластами замкнутоячеистые П. имеют более высокие диэлектрич. св-ва и меньшую газо- и паропрони-цаемость. Горючесть, био-, свето-, тепло- и хим. стойкость определяются гл. обр. типом полимера, однако эти показатели у П. из-за более развитой уд. пов-сти несколько ниже, чем у соответствующих им монолитных полимеров.

Применение. Жесткие П.-эффективные теплоизоляц. материалы для несущих и навесных строит. панелей, бытовых и пром. холодильников, трубопроводов, хим. оборудования, пассажирских и изотермич. вагонов. В этом же качестве П. применяют для предохранения мостов от обледенения, защиты с.-х. культур от заморозков, аккумулирования тепла в гелиотехн. установках. Эластичные П.-эффективные вибро-демпфирующие материалы для сидений автомобилей и мягкой мебели, постельных принадлежностей, амортизирующих прокладок.

Открытопористые П. применяют в произ-ве фильтров, в качестве ср-ва для поглощения и удержания жидкостей (напр., нефтепродуктов), как гигиенич. и спец. губки, для изготовления утепленной одежды и мягких игрушек.

Напыляемые П. надежно герметизируют щели, стыки конструкций, пустоты.

Исходные смеси для получения П.-вспенивающееся при применении связующее для электронных модулей и блоков (попутно решается проблема электроизоляции), ср-во для укрепления песчаных почв, горных выработок.

Благодаря технологичности и легкости П.-перспективные материалы для упаковки хрупких изделий и прецизионных приборов, замороженных и скоропортящихся продуктов.

В развитых странах на изготовление П. расходуется 5-10% от общего выпуска крупнотоннажных полимеров. Мировое произ-во П. ок. 6,5 млн. т/год (1980), из них ок. 1/3 приходится на долю США.

Первый П. (на основе эбонита) получен в 1922 в Великобритании.

Лит.: Тараканов О. Г., Мурашов Ю. С., Пснопласты, M., 1975; Берлин А. А., Шутов F. А., Пспополимеры на основе реакционноспособ-ных олигомсров, M., 1978; их же, Упрочненные газонаполненные пластмассы, M., 1980: их же. Химия и технология газонаполненных высокополимеров, M., 1980; Вспененные пластические массы. Каталог.... Черкассы, 1982; Тараканов О. Г., Шамов И. В., Альперн В. Д., Наполненные пенопласты, M., 1989.

Ю. С. Мурашов.


5-пиразолон B-пропиолактон L-пеницилламин Пааля-кнорра реакция Палеобиогеохимия Палладий Пальмитиновая кислота Пальмовое масло Пантотеновая кислота Папаверин Папайн Пара Паральдегид Парамагнетики Параметры состояния Паратгормон Парафин Парафины Параформальдегид Пармидин Парофазный анализ Парфюмерные масла Пассерини реакция Пассивность металлов Патерно- бюхи реакция Паули принцип Паули реакция Пек древесный Пек каменноугольный Пектины Пеларгоновая кислота Пенициллины Пенная сепарация Пенопласты Пенопласты интегральные Пенополивинилхлориды Пенополиолефины Пенополистиролы Пенополиуретаны Пеностекло Пенофенопласты Пентанолы Пентаны Пентапласт Пентафенилфосфоран Пентафталевые смолы Пентафтор-2-азапропен Пентафторанилин Пентафторфенол Пентафторхлорбензол Пентаэритрит Пентены Пентозофосфатный цикл Пентозы Пены Пепсин Пептидные алкалоиды Пептидные антибиотики Пептидогликаны Пептиды Пептизация Первое начало термодинамики Переалкилирование Переаминирование Перегалогенирование Перегонка Перегруппировки молекулярные Перемешивание Перенапряжение электрохимическое Перенитрилирование Переноса процессы Переноса числа Переходные элементы Переэтерификация Пери Перилен Перилловое масло Перимидин Периноновые красители Период индукции Перитектика Перициклические реакции Перкина реакция Перкова реакция Перколяционная очистка Пермаллой Перманганатометрия Перманганаты Перовскит Пероксидазы Пероксидные Пероксинитраты Пероксобораты Пероксокислоты Персоль Перфторалкановые кислоты Перфторалкансульфокислоты Перфторалкилиодиды Перфтордекалин Перфторизобутилен Перфторкарбоновые кислоты Перфторнитрозоизобутан Перфторолефинов окиси Перфторполиэфиры Перфторциклобутан Перфторциклобутанон Перфторциклобутен Перхлораты Перхлорвиниловые лаки Перхлорвиниловые смолы Перхлорэтилен Пестицидные препараты Пестициды Петролатум Петролейный эфир Петрохимия Печатание тканей Печи Пигменты Пиколиновая кислота Пиколины Пикраты Пикриновая кислота Пикте шпенглера реакция Пилокарпин Пинаконы Пиндолол Пинены Пиннера реакции Пиперазин Пиперидин Пиперидолы Пиперилен Пиперитон Пиразидол Пиразин Пиразол Пирамидальная инверсия Пираны Пирацетам Пирен Пиретрины Пиретроиды Пиридазин Пиридилазонафтол Пиридилазорезорцин Пиридин Пиридиния соли Пиридиновые алкалоиды Пиридоны Пирилия соли Пиримидин Пиримидиновые основания Пирит Пиро... Пиробензол Пировиноградная кислота Пирогаллол Пирогенетическая вода Пирогидролиз Пирокатехин Пирокатехиновый фиолетовый Пироксилин Пиролиз Пиролиз древесины Пиролиз нефтяного сырья Пиромеллитовая кислота Пиромеллитовый диангидрид Пирометаллургия Пирометры Пироны Пиротехнические составы Пирофорное вещество Пирофосфаты неорганические Пирофосфаты органические Пирохлоры Пироэлектрики Пиррол Пирролидин Пирролизидин Пирролизидиновые алкалоиды Пируваткарбоксилаза Питатели Питтинговая коррозия Пищимуки реакция Плавиковая кислота Плавиковый шпат Плавкости диаграмма Плавление Плазма Плазмалогены Плазмида Плазмин Плазмохимическая технология Плазмохимия Планарная технология Планирование эксперимента Планка постоянная Пластбетон Пластизоли Пластикат Пластикация полимеров Пластики Пластификаторы Пластификация полимеров Пластические массы Пластичность Пластичные смазки Пластмассы Платина Платиновые металлы Платифиллин Платформинг Плацентарный лактоген Пленки полимерные Пленкообразователи Плотная упаковка Плотномеры Плутоний Плутония карбиды Плутония нитрид Плюроники Плёночные аппараты Пневмо- и гидротранспорт Пневмоформование полимеров Поверхностная активность Поверхностная энергия Поверхностное натяжение Поверхностные явления Поворотная изомерия Погрешность анализа Подвулканизация Подземная коррозия Подобия теория Подсмольная вода Подсолнечное масло Пожарная опасность Позитивный процесс Позитрон Позитроний Полевые шпаты Полезные ископаемые Поли(ароилен-бис-бензимидазолы) Поли-2,6-диметил-n-фениленоксид Поли-4-метил-1-пентен Поли-n-бензамид Поли-n-ксилилены Поли-n-фенилентерефталамид Поли-м-фениленизофталамид Поли-[3,3-бис-(хлорметил)оксетан] Поли-n-винилкарбазол Поли-n-винилпирролидон Поли-е-капроамид Полиакриламид Полиакрилаты Полиакриловая кислота Полиакриловые лаки Полиакрилонитрил Полиалломеры Полиамидные волокна Полиамидные плёнки Полиамидокислоты Полиамиды Полиамины Полиамфолиты Полиангидриды Полиарилаты Полиацетали Полиацетилен Полибензимидазолы Полибензоксазолы Полибензотиазолы Полибутен Полибутилентерефталат Поливинилketаль Поливинилацетали Поливинилацетат Поливинилбутиловый эфир Поливинилбутираль Поливинилены Поливинилиденфторид Поливинилиденхлорид Поливиниловые эфиры Поливиниловый спирт Поливинилпиридины Поливинилспиртовые волокна Поливинилстеарат Поливинилформаль Поливинилформальэтилаль Поливинилфторид Поливинилхлорид Поливинилхлорид хлорированный Поливинилхлоридные волокна Поливинилхлоридные пленки Поливинилэтилаль Полигалогениды Полигексаметиленадипинамид Полигексаметиленгуанидин Полигексаметиленсебацинамид Полигетероарилены Полигидразиды Полигидроксиамиды Полидезоксирибонуклеотид-синтетазы Полидодеканамид Полиеновые антибиотики Полиены Полиизобутилен Полиизопрен Полиимидные пленки Полиимиды Полиины Поликарбонатные плёнки Поликарбонаты Поликонденсация Поликонденсация в расплаве Поликонденсация в растворе Поликоординация Поликристаллы Полилактид Полимер-полимерные комплексы Полимераналогичные превращения Полимербетон Полимергомологи Полимеризация Полимеризация в растворе Полимеризация на наполнителях Полимерные гидрогели Полимерные красители Полимерные материалы Полимерцемёнт Полимеры Полиметакрилаты Полиметакриловая кислота Полиметаллоорганосилоксаны Полиметиленоксид Полиметилметакрилат Полиметиновые красители Полиметины Полиморфизм Полимочевины Полинозные волокна Полиоксадиазолы Полиоксиметилён Полиоксипропилён Полиоксиэтилен Полиоксиэтиленалканоаты Полиоксиэтиленалкиламины Полиолефиновые волокна Полиолефиновые плёнки Полиолефины Полиорганосилазаны Полиорганосиланы Полиорганосилоксаны Полипептиды Полипиромеллитимиды Полиприсоединёние Полипропилен Полипропилен хлорированный Полипропиленовые волокна Полипропиленовые плёнки Полипропиленоксид Полирекомбинация Полирование Полироли Полисахариды Полистирол Полистирол ударопрочный Полистирольные плёнки Полисульфидные каучуки Полисульфиды неорганические Полисульфйды органические Полисульфоны Политетраметиленадипинамид Политетрафторэтилен Политионаты Политипизм Политонные перегруппировки Политриазолы Политрифторхлорэтилен Полиуретанмочевины Полиуретановые волокна Полиуретановые лаки Полиуретановые эластомеры Полиуретаны Полифениленоксиды Полифенилены Полиформальдегид Полифосфазены Полифтор- Полифторкетоны Полихиноксалины Полициклизация Полиэдрические соединения Полиэлектролиты Полиэтерификация Полиэтилен Полиэтилен хлорированный Полиэтилен хлорсульфированный Полиэтиленгликоли Полиэтиленимин Полиэтиленовые волокна Полиэтиленовые плёнки Полиэтиленоксид Полиэтиленполиамины Полиэтилентерефталат Полиэфирные волокна Полиэфирные лаки Полиэфирные смолы Полиэфируретаны Полиэфиры простые Полиэфиры сложные Полиядерные соединения Полоний Полоновского реакция Полукоксование Полуметаллы Полупроводники Полупроводниковые материалы Полуцеллюлоза Полуэмпирические методы Поля лигандов теория Поляризация Поляризуемость Поляримётрйя Полярные молекулы Полярография Пористая резина Пористое стекло Пористость Порообразователи Поропласты Порофоры Пороха Порошки Порошковая металлургия Порошковые краски Портландцемент Порфирины Порядок реакции Постоянная авогардо Постоянная больцмана Постоянная планка Поташ Потенциал ионизации Потенциал нулевого заряда Потенциал оседания Потенциал течения Потенциометрия Празеодим Превореакция Прегля методы Предельные углеводороды Предиссоциация Преднизолон Прелога правило Премиксы Препарированные смолы Препрёги Прессование полимеров Пресспорошкй Преципитат Приборные масла Приведенные параметры Привитые сополимеры Пригожина теорема Прилежаева реакция Принса реакция Приработочные масла Природные волокна Присадки к топливам Присоединения реакции Проба аналитическая Пробирный анализ Проектирование Произведение активностей Произведение растворимости Производство энтропии Проксамины Проксанолы Пролактин Проламины Пролин Промедол Прометий Промоторы Проназа комплекс Пропан Пропаргиловый спирт Пропелленты Пропен Пропиламины Пропилен Пропиленгликоли Пропиленкарбонат Пропиленоксид Пропиленоксидный каучук Пропиленсульфид Пропиловый спирт Пропин Пропиоловая кислота Пропионовая кислота Пропионовый альдегид Пропиофенон Проспидин Простагландины Пространственная изомерия Простые эфиры Протактиний Протеогликаны Протеолитические ферменты Противовирусные средства Противовуалирующие вещества Противогазы Противоглистные средства Противоградовые составы Противогрибковые средства Противокашлевые средства Противомикробные средства Противоопухолевые средства Противопротозойные средства Противостарители Противосудорожные средства Противоутомители Протий Протон Протонирование Протравители семян Протравные красители Протромбиновый комплекс Прочность Прямые красители Псевдовращение Псевдокумол Псевдоожижение Псевдоожиженный электрод Псевдооснования Психостимулирующие срёдсгва Психотропные средства Птеридин Пулегон Пульсационные аппараты Пуммерера перегруппировка Пурин Пуриновые алкалоиды Пуриновые антибиотики Пуриновые основания Пфицнера-моффатта реакция Пчелиный воск Пшорра синтез Пылемеры Пылеулавливание Пыли Пьезоэлектрики Пятновыводители Фотометрия пламени эмиссионная
www.missus.ru: Как пересаживать фаленопсисы
11.12.2016
… коры. Сажают в кору (обычно сосновую), для увеличения влажности к ней можно добавить мох (сфагнум). Однако вместе с корой можно использовать также древесный уголь, разрезанные винные пробки или пенопласт. В таком субстрате с крупными фракциями образуются необходимые для аэрации корней пустоты. Заполнять их более мелким субстратом не нужно, так у корней будет возможность дышать. …
www.pravda.ru: Белый медведь научит греться
30.01.2014
… приравнять к таковому) будут отдавать тепло намного более разреженному воздуху, отчего теплопотери сильно затруднятся. На основе этого же принципа человек создал и искусственные утеплители из пенопласта и стекловаты. …
www.pravda.ru: В Бразилии повторилась трагедия "Хромой лошади"
27.01.2013
… России такая же катастрофа произошла в клубе "Хромая лошадь" 5 декабря 2009 года в Перми. Тогда после запуска в помещении запрещенной пиротехники вспыхнула пенопластовая изоляция, огонь стремительно распространился по клубу и отрезал посетителям пути к выходу. В пожаре погибли 156 из 300 человек. Сейчас продолжается следствие по данному делу. В среду гособвинение на …
www.pravda.ru: В Самаре таинственно исчез памятник космонавту
04.05.2011
… приняла участие дочь первого космонавта планеты Галина Гагарина. Однако часть общественности возмутили исполнение фигуры и завышенная стоимость ландшафтной скульптуры, изготовленной из обычного …
www.medpulse.ru: Водная гимнастика стройнит и веселит
16.07.2010
… выпады ногами в воде по пояс. Прорабатываются бедра и ягодицы.Упражнение 7. Встаньте в воду по пояс. Перед собой положите что-нибудь нетонущее, например кусок пенопласта. Положите на него ладони и начинайте давить вниз, стараясь утопить. Держите спину ровно, выполняя упражнение 2-3 минуты. Прорабатываются грудные мышцы и мышцы рук.Упражнение …
www.medpulse.ru: Вплавь к здоровью
28.05.2009
… занятиях можно использовать водные гантели, специальные резинки, утяжелители, перчатки с перепонками, степ-платформы для бассейнов или же просто пенопластовую доску и мячик. …
www.medpulse.ru: Можно ли избавиться от шишек на ногах?
07.03.2008
… стельки с супинаторами по форме вашей ноги, но это не везде возможно сделать.Так что, по крайней мере, нужно положить между первым и вторым пальцами прокладочку из пенопласта или специального материала. Обязательно смените обувь, не ходите в обуви с узким носком, а носите «лапотную», широкую, чтобы большой палец не «уходил» в сторону. Подложите под …
www.yoki.ru: Памятник сибирскому характеру
15.08.2007
… была установлена в Красноярске, недалеко от пешеходного моста через Енисей. Волк, рябина и лавочка с гитарой будут составлять единую композицию.Пока волки выполнены из пенопластово-гипсовой смеси, но в окончательном варианте они будут сделаны из металлической ковки. Также в окончательном варианте из поломанной веточки рябины будет литься сок, который позже будет превращаться в ручей. …
www.yoki.ru: Перевозка кита из Чикаго в Вашингтон стоила 120 тысяч долларов
12.06.2007
… уникальную транспортировку шестилетнего кита из Чикаго в Вашингтон. Американский военный самолет DC-8 переносил 450-килограммового кита-белуху в специальном построенном контейнере, засыпанном пенопластом. По словам представителя аквариума имени Джона Шедда в Чикаго, всю дорогу кита сопровождал ветеринар.Зовут шестилетнего кита Каник, что на языке гренландских эскимосов …
www.yoki.ru: Уникальная операция в США: кита перевезли на самолете
11.06.2007
… в Вашингтон был доставлен кит.Белуха Каник весит 450-килограммовая. Она была перевезена военным самолетом DC-8. Кита погрузили в специальный контейнер, засыпанный особым пенопластом. Представители аквариума имени Джона Шедда в Чикаго сообщают, что всю дорогу кита сопровождал ветеринарный врач. Операция завершилась успешно и стоила 120 тысяч долларов. 84 …
www.yoki.ru: В США авиарейсом доставили кита
11.06.2007
… Каник, что на языке гренландских эскимосов означает «Снежок».Млекопитающее было перевезено военным самолетом DC-8: кита погрузили в специальный контейнер, засыпанный особым пенопластом. По словам представителя чикагского аквариума имени Джона Шедда, всю дорогу за самочувствием кита наблюдал ветеринар.Операция завершилась успешно и стоила 120 тысяч долларов, …
www.yoki.ru: Китаец женился сам на себе
04.02.2007
… Китая из города Чжухай решил сочетаться браком с самим собой. Церемония прошла по всем правилам, причем в роли "невесты" выступало сделанное из пенопласта изображение "жениха", одетое в подвенечное платье.На "свадьбе" присутствовали около ста гостей, включая шафера и подружку "невесты". …
www.yoki.ru: Байкалу сделали операцию
28.12.2006
… два опытных врача-офтальмолога Сергей Сергушев и Дмитрий Гончаров. Операция продолжалась полтора часа. Все это время тигр провел под наркозом на специально лежаке из пенопласта. "Байкал всегда отличался спокойным нравом, и мы уверены, что он спокойно перенесет последствия хирургического вмешательства", - сказали в дирекции цирка. При этом, "некоторое время …
www.medpulse.ru: Хищная пена: полимерный утеплитель в панельных домах опасен для здоровья
04.05.2004
… я в сравнительно "молодой" панельной 16-этажке, стены которой утеплены пенопластом, - позвонил в редакцию киевлянин Борис Трофимчук. - Но с каждым годом в квартире почему-то становится все холоднее, а еще прочитал, что этот утеплитель выделяет вредные вещества, от которых сильно …