Словарь научных терминов

Олигомеры

ОЛИГОМЕРЫ (от греч. oligos-малый, маленький и meros-часть), члены гомологич. рядов, занимающие по размеру молекул область между мономерами и высокомол. соединениями. Верх. предел мол. масс О. зависит от их хим. природы и по порядку величины совпадает с мол. массой сегмента (см. Макромолекула). В отличие от полимеров св-ва О. сильно зависят от изменения кол-ва повторяющихся звеньев в молекуле и природы концевых групп.

Различают реакционноспособные О., содержащие в молекулах одну или более функц. групп, к-рые м. б. расположены не только на концах молекулы, и О., не содержащие функц. групп. Последние называют как соответствующие полимеры с заменой префикса "поли" на "олиго", напр. олигобутади-ены. При образовании названий реакционноспособных О., как правило, за префиксом "олиго" указывают тип олиго-мерного блока (части молекулы между концевыми группами) и затем функц. группы, напр, олигоуретанметакрилаты, олигоэфирдиолы. В технике нек-рые типичные О. наз. смолами, напр. феноло-формальд. смолы, или как полимеры, напр. полиалкиленгликольмалеинаты. О. с двумя одинаковыми функц. группами на концах молекулы принято называть бифункциональными (телехелевыми) О. или полимерами, а при содержании трех и более функц. групп -полифункциональными О. Способные к образованию высокомол. линейных и сетчатых полимеров би- и полифункцио-нальные О. наз. форполимерами, или преполимерами, а монофункциональные О -макромономерами. Систематич. названия конкретных О. производят по номенклатуре орг. соед. (для низших гомологов) или полимеров (см. также Номенклатура химическая, Высокомолекулярные соединения).

О. характеризуются молекулярно-массовым распределением (ММР) и распределением по типу функциональности (РТФ) (см. Функциональность полимеров). Для О. существует зависимость ММР от степени полимеризации или мол. массы (дискретные ф-ции ММР). Напр., для олигоэтилена-дипинатов при изменении https://www.medpulse.ru/image/encyclopedia/8/2/0/9820.jpegn от 550 до 3470 полидисперсность (https://www.medpulse.ru/image/encyclopedia/8/2/1/9821.jpeg , где https://www.medpulse.ru/image/encyclopedia/8/2/2/9822.jpeg и https://www.medpulse.ru/image/encyclopedia/8/2/3/9823.jpeg-соотв. среднечисловая и сред-немассовая мол. массы) повышается от 1,15 до 1,85. Обычно ММР для О. более узкое, чем для полимеров:https://www.medpulse.ru/image/encyclopedia/8/2/4/9824.jpeg составляет <2, ~1 и 1-2 для О.-продуктов поликонденсации, анионной полимеризации циклич. эфиров и радикальной полимеризации соответственно. Реакционноспособные О. обладают полидисперсностью не только по мол. массе, но и по функциональности, характеризуемой соотношением среднемассовой https://www.medpulse.ru/image/encyclopedia/8/2/5/9825.jpeg и среднечисловой https://www.medpulse.ru/image/encyclopedia/8/2/6/9826.jpeg функциональ-ностей (обычноhttps://www.medpulse.ru/image/encyclopedia/8/2/7/9827.jpeg> 1), что связано с дефектностью, возникающей при синтезе О. Важной характеристикой таких О. является РТФ, т. е. относительное содержание в О. молекул разл. функциональности. РТФ во многом определяет св-ва продуктов дальнейших превращений О.

Физ.-хим. св-ва гомологов низкомолекулярных О. существенно различаются, но с увеличением мол. массы эти различия становятся все менее выраженными. Для линейных О. изменение ряда св-в (парахор, рефракция, плотность, харак-теристич. вязкость) в гомологии, ряду пропорционально https://www.medpulse.ru/image/encyclopedia/8/2/8/9828.jpeg, где https://www.medpulse.ru/image/encyclopedia/8/2/9/9829.jpeg-средняя степень полимеризации. Вязкость О. определяется мол. массой, природой основной цепи, наличием и полярностью функц. групп. Чем выше мол. масса О. и полярность функц. групп, тем больше их вязкость.

Реакционноспособные О. вступают в хим. р-ции, характер к-рых определяется типом функц. групп. Наиб. практич. значение приобрели полимеризация и поликонденсация, протекающие при отверждении О. и приводящие к образованию сетчатых полимеров.

Получают О. методами полимеризации (радикальной, ионной, координационно-ионной) и поликонденсации, используя разл. приемы ограничения размера растущих молекул (все процессы получения О. наз. олигомеризацией). При полимеризации это достигается варьированием соотношения мономер: инициатор(катализатор), увеличением вклада р-ций передачи цепи на мономер (напр., полимеризация метилметакрилата в присут. порфиринов), введением агентов передачи цепи - телогенов (см. Теломеризация). Подбором соответствующих мономеров, инициаторов и телогенов получают О. с желаемыми функц. группами. Эти методы используют для получения олигоолефинов, олигодиенов (жидких каучуков), простых и сложных олигоэфиров, олиго-амидов, олигосилоксанов.

Мол. массу О. при поликонденсации регулируют прекращением р-ции при низких глубинах превращения или использованием избытка одного из реагентов. Первый способ применяют при получении феноло-альдегидных смол, сочетанием первого и второго-при синтезе карбамидных смол. Чаще используют второй способ регулирования мол. массы, напр. при получении алкидных и эпоксидных смол, сложных олигоэфиров. Иногда второй способ используют в сочетании с введением в р-цию монофункцион. реагентов, напр. акриловых к-т при синтезе олигоэфиракрилатов (конденсац. теломеризация).

О. получают также деструкцией высокомол. полимеров, напр. разрывом дисульфидных связей в полисульфидных каучуках, озонолизом полидиенов. Широко используется модификация реакционноспособных О. путем замены концевых функц. групп, напр. замены гидроксильных групп в оли-гоэфирдиолах на акриловые или изоцианатные группы.

О. широко распространены в природе (напр., битумы, высокомол. парафины, компоненты нефти) и входят в состав живых организмов (олигопептиды, олигонуклеотиды), но наиб. практическое применение находят синтетич. О., в первую очередь реакционноспособные. При их переработке совмещают в одной операции стадию синтеза собственно полимера и изготовление изделия (т. наз. хим. формование). Этот метод по сравнению с технологией, основанной на использовании высокомол. полимеров, имеет существ, преимущества, т.к. жидкие или легкоплавкие О., даже при высоком содержании наполнителей, можно превратить в изделия формованием без использования высоких т-р и давлений, а также р-рителей. По сравнению с мономерами О. менее летучи и токсичны и их отверждение при хим., радиационном или фотоинициировании происходит со значительно меньшими тепловыми эффектами и усадками.

Наиб. широко О. используют в качестве связующих для наполненных, особенно слоистых пластиков (см. Пластические массы), таких, как клеи синтетические и лаки (см., напр., Алкидные смолы, Кремнийорганические лаки, Полиэфирные лаки, Эпоксидные лаки), в компаундах полимерных, для получения пенопластов (напр., пенофенопластов), герме-тиков. Получил распространение прием временной пластификации высокомол. полимеров реакционноспособными О., что позволило упростить переработку полимера в изделие и модифицировать его св-ва. Из реакционноспособных О. наиб, практич. значение имеют меламино-формальдегидные смолы, мочевино-формалъдегидные смолы, феноло-алъдегид-ные смолы, алкидные смолы, эпоксидные смолы, олигомеры акриловые.

Нереакционноспособные О. применяют в качестве пластификаторов, ПАВ, масел, теплоносителей и т.д. (см., напр., Кремнийорганические жидкости).

Лит.: Энциклопедия полимеров, т. 2, М., 1974,с. 457-68; Энтелис С. Г., Евреинов В. В., Кузаев А. И., Реакционноспособные олигомеры, М., 1985; Berlin A. A., Matveeva N.G., "J. Polym. Sci.", pt С, 1977, № 12, p. 1-64; их же, там же, pt D, 1980, № 15, р. 107-206.

Л/. Н. Гусев, Б. И. Западинский.


8-оксихинолин Обесфторенные фосфаты Обжиг Обменное взаимодействие Обогащение полезных ископаемых Обратный осмос Общая химия Объёмный анализ Объёмных отношений закон Овициды Огнезащита Огнестойкость Огнеупорные материалы Одноэлектронный перенос Одоранты Оже-спектроскопия Озазоны Озокерит Озон Озониды неорганические Озониды органические Озонирование Озоностойкость Ойтисиковое масло Окисление Окислители Окислительная дегидрополиконденсация Окислительное азосочетание Окислительное фосфорилирование Окислительное хлорфосфонирование Окислительное число Окислительный аммонолиз Оксадиазолы Оксазиновые красители Оксазиридин Оксазол Оксазолидин Оксазолины Оксазолоны Оксалаты Оксалоацетатдекарбоксилаза Оксанфлы Оксепин Оксетан Оксиальдегиды и оксикетоны Оксиантрахиноны Оксибензальдегиды Оксибензойные кислоты Оксидационные красители Оксидирование Оксидифениламины Оксидоредуктазы Оксиды Оксикислоты Оксилидин Оксиликвиты Оксимы Оксинафтальдегиды Оксинафтойные кислоты Оксинафтохиноны Оксинитрилы Оксипиридины Оксипролин Оксипропилцеллюлоза Оксиран Оксисоли Окситоцин Оксифосы Оксиэтилированные алкиламины Оксиэтилированные алкилфенолы Оксиэтилированные спирты Оксиэтилцеллюлоза Оксолин Оксониевые соединения Оксосинтез Оксоуглероды Октадециламин Октадин Октаналь Октановое число Октанолы Октантов правило Октаны Октиловые спирты Октоген Олеандомицин Олеум Олефинов оксиды Олефинов тиооксиды Олефины Оливковое масло Оливомицины Олигоамиды Олигокарбонатакрилаты Олигомеризация Олигомеры Олигомеры акриловые Олигосахариды Олигоуретанакрилаты Олигоэфиракрилаты Олифы Олова галогениды Олова оксиды Олова сплавы Олова сульфиды Олова халькогениды Оловоорганические соединения Омагничивание Омыление Омыления число Ониевые соединения Онсагера теорема Онсагера уравнение Оперон Опиоидные пептиды Оппенауэра реакция Оптимизация Оптическая активность Оптическая изомерия Оптические материалы Оптическое вращение Орбиталь Органическая химия Органические удобрения Органический анализ Органический синтез Органо-минеральные удобрения Органогалогенсиланы Органопластики Органосилазаны Органосиликатные материалы Органосилоксаны Орнитин Орнитиновый цикл Орто, мета, пара Ортолевы кинга реакция Ортоноволаки Ортоэфиры Орципреналина сульфат Осаждение Осветление Осмий Осмийорганические соединения Осмол Осмометрия Основания неорганические Основания органические Основные красители Особо чистые вещества Оствальда закон разведения Отбеливатели оптические Отбеливающие земли Отбора правила Отвердители Отверждение Открытая система Отстаивание Охрана природы Охрана труда Охры Оцимен