Словарь научных терминов

Обменное взаимодействие

ОБМЕННОЕ ВЗАИМОДЕЙСТВИЕ, специфич. квантово-мех. взаимодействие тождественных частиц, в частности электронов. Является следствием принципа неразличимости частиц в квантовой механике и не имеет аналога в классич. физике. Суть принципа неразличимости сводится к требованию определенной перестановочной симметрии волновой функции системы тождественных частиц: для частиц с целочисленным спином (бозонов) волновая ф-ция должна быть симметричной, т.е. она не должна меняться при перестановке индексов частиц (координат и проекций спинов), а для частиц с полуцелым спином (фермионов) при такой перестановке волновая ф-ция должна менять знак, т. е. быть антисимметричной (см. Паули принцип). Наличие перестановочной симметрии налагает ограничения на взаимное пространств. расположение частиц, что приводит к изменению энергии квантовой системы по сравнению с аналогичной классич. системой частиц. Это изменение энергии обычно рассматривается как вызванное неким дополнительным квантовомсханическим взаимодействием, оно получило назв. "О. в.", поскольку определяется членами в выражении для энергии системы, отвечающими перестановкам частиц (обмену частицами).

В химию понятие "О. в." было введено в 1927 В. Гайтле-ром и Ф. Лондоном в задаче расчета энергии основного состояния молекулы Н2. Было показано, что возникновение О. в. является причиной образования ковалентыой хим. связи. Пусть состояние электрона одного атома характеризуется волновой ф-цией jA(r1), электрона другого атома-ф-цией jB(r2). В нулевом приближении, т.е. при пренебрежении взаимод. между электронами, волновая ф-ция системы двух электронов равна произведению jА(r1) jB(r2). Вследствие квантовомех. неразличимости одинаковых частей этой же энергии будет отвечать волновая ф-ция jA(r2)jB(r1), соответствующая обмену электронов между атомами, т.е. имеет место т. наз. обменное вырождение. Ур-нию Шрёдингера будут удовлетворять две линейные комбинации этих ф-ций:

https://www.medpulse.ru/image/encyclopedia/3/6/4/9364.jpeg

где https://www.medpulse.ru/image/encyclopedia/3/6/5/9365.jpeg -интеграл перекрывания электронных волновых ф-ций атомов А и В (см. Молекулярные интегралы). Полная волновая ф-ция системы является антисимметричной относительно перестановок электронов (т.е. меняет знак при таких перестановках) и строится из произведений пространственных (координатных) ф-ций https://www.medpulse.ru/image/encyclopedia/3/6/6/9366.jpeg и https://www.medpulse.ru/image/encyclopedia/3/6/7/9367.jpeg на соответствующие спиновые ф-ции (спин-ф-ции). Из требования антисимметричности вытекает, что ф-цияhttps://www.medpulse.ru/image/encyclopedia/3/6/8/9368.jpeg отвечает противоположному направлению спинов электронов и полному электронному спину системы S=0 (синглет-ное состояние), ф-ция https://www.medpulse.ru/image/encyclopedia/3/6/9/9369.jpeg-параллельно направленным спинам и полному электронному спину S= 1 (триплетное состояние). Энергия взаимод. атомов А и В в этих состояниях (https://www.medpulse.ru/image/encyclopedia/3/7/0/9370.jpeg и https://www.medpulse.ru/image/encyclopedia/3/7/1/9371.jpeg соотв.) вычисляется как среднее значение оператора взаимод. U^вз:

https://www.medpulse.ru/image/encyclopedia/3/7/2/9372.jpeg

где

https://www.medpulse.ru/image/encyclopedia/3/7/3/9373.jpeg

Интеграл К представляет классич. энергию кулоновского взаимод. пространственно распределенных зарядов; интеграл А наз. о б м е н н ы м и н т е г р а л о м, характеризует энергию О.в. и не имеет классич. аналога. Он появляется вследствие того, что каждый электрон, как это следует из вида волновых ф-ций, с равной вероятностью может находиться как у атома А, так и у атома В. При этом в случае симметричной координатной ф-ции https://www.medpulse.ru/image/encyclopedia/3/7/4/9374.jpeg вероятность для электронов расположиться в пространстве между ядрами увеличивается, а в случае антисимметричной ф-цииhttps://www.medpulse.ru/image/encyclopedia/3/7/5/9375.jpeg уменьшается по сравнению с невзаимодействующей системой независимых атомов, т.е. появляются силы, к-рые имеют квантовомех. природу и воздействуют на электроны так, что изменяют вероятность их распределения в пространстве, а следовательно, и энергию взаимодействия. Эти силы и являются причиной возникновения О.в. И хотя полная энергия системы зависит от значения электронного спина, вследствие зависимости перестановочной симметрии координатной волновой ф-ции от полного электронного спина, энергия О. в. не имеет отношения к взаимод. спинов, а является частью электростатич. энергии, к-рая обусловлена квантовой природой электронов.

Обменный интеграл (5) экспоненциально убывает с ростом расстояния между атомами, т.к. зависит от степени перекрывания волновых ф-ций. Поэтому О.в. проявляется лишь при непосредственном сближении атомов. В отличие от электромагнитных и гравитационных сил, являющихся дальнодействующими, квантовые обменные силы относятся к близкодействующим, им присуще св-во насыщения. Энергия дальнодействующего взаимод. системы из N частиц пропорциональна числу разл. пар, к-рые можно составить из этих частиц, т.е. N(N — 1)/2https://www.medpulse.ru/image/encyclopedia/3/7/6/9376.jpeg N2/2 при N >> 1, в то время как энергия О.в. пропорциональна числу ближайших пар-соседей, т.е. она пропорциональна N.

В случае многоэлектронных систем знак энергии О.в. зависит от строения электронной оболочки взаимод. объектов (атомов, молекул). Если взаимод. атомы с незаполненной валентной оболочкой, энергия О. в. отрицательна (атомы притягиваются). Поэтому в согласии с (3) осн. энергетич. состояние большинства молекул синглетно. О.в. является главным стабилизирующим фактором при образовании ко-валентной связи. В случае систем с замкнутыми электронными оболочками энергия О. в. положительна, О. в. приводит к отталкиванию частиц. Именно такая ситуация имеет место при взаимод. инертных атомов или нейтральных молекул (см. Межмолекулярные взаимодействия).

О. в. определяет в значит. степени магн. св-ва в-ва. Так, состояние металлич. кристалла с параллельными спинами электронов (ферромагнитное) м. б. термодинамически более устойчиво, чем состояние с беспорядочно ориентированными спинами электронов, лишь в том случае, если обменный интеграл А положителен. Характерная для ферромагнетика точка Кюри (т-ра, выше к-рой у в-ва исчезают ферро-магн. св-ва) м. б. определена как т-ра, при к-рой энергия теплового движения атомов становится равной термодина-мич. выигрышу в энергии при параллельной ориентации спинов.

Лит.: Вонсовский С. В., Магнетизм, М., 1971; Давыдов А. С., Квантовая механика, 2 изд., М., 1973. И. Г. Каплан.


8-оксихинолин Обесфторенные фосфаты Обжиг Обменное взаимодействие Обогащение полезных ископаемых Обратный осмос Общая химия Объёмный анализ Объёмных отношений закон Овициды Огнезащита Огнестойкость Огнеупорные материалы Одноэлектронный перенос Одоранты Оже-спектроскопия Озазоны Озокерит Озон Озониды неорганические Озониды органические Озонирование Озоностойкость Ойтисиковое масло Окисление Окислители Окислительная дегидрополиконденсация Окислительное азосочетание Окислительное фосфорилирование Окислительное хлорфосфонирование Окислительное число Окислительный аммонолиз Оксадиазолы Оксазиновые красители Оксазиридин Оксазол Оксазолидин Оксазолины Оксазолоны Оксалаты Оксалоацетатдекарбоксилаза Оксанфлы Оксепин Оксетан Оксиальдегиды и оксикетоны Оксиантрахиноны Оксибензальдегиды Оксибензойные кислоты Оксидационные красители Оксидирование Оксидифениламины Оксидоредуктазы Оксиды Оксикислоты Оксилидин Оксиликвиты Оксимы Оксинафтальдегиды Оксинафтойные кислоты Оксинафтохиноны Оксинитрилы Оксипиридины Оксипролин Оксипропилцеллюлоза Оксиран Оксисоли Окситоцин Оксифосы Оксиэтилированные алкиламины Оксиэтилированные алкилфенолы Оксиэтилированные спирты Оксиэтилцеллюлоза Оксолин Оксониевые соединения Оксосинтез Оксоуглероды Октадециламин Октадин Октаналь Октановое число Октанолы Октантов правило Октаны Октиловые спирты Октоген Олеандомицин Олеум Олефинов оксиды Олефинов тиооксиды Олефины Оливковое масло Оливомицины Олигоамиды Олигокарбонатакрилаты Олигомеризация Олигомеры Олигомеры акриловые Олигосахариды Олигоуретанакрилаты Олигоэфиракрилаты Олифы Олова галогениды Олова оксиды Олова сплавы Олова сульфиды Олова халькогениды Оловоорганические соединения Омагничивание Омыление Омыления число Ониевые соединения Онсагера теорема Онсагера уравнение Оперон Опиоидные пептиды Оппенауэра реакция Оптимизация Оптическая активность Оптическая изомерия Оптические материалы Оптическое вращение Орбиталь Органическая химия Органические удобрения Органический анализ Органический синтез Органо-минеральные удобрения Органогалогенсиланы Органопластики Органосилазаны Органосиликатные материалы Органосилоксаны Орнитин Орнитиновый цикл Орто, мета, пара Ортолевы кинга реакция Ортоноволаки Ортоэфиры Орципреналина сульфат Осаждение Осветление Осмий Осмийорганические соединения Осмол Осмометрия Основания неорганические Основания органические Основные красители Особо чистые вещества Оствальда закон разведения Отбеливатели оптические Отбеливающие земли Отбора правила Отвердители Отверждение Открытая система Отстаивание Охрана природы Охрана труда Охры Оцимен