Словарь научных терминов
Нитрозосоединения

НИТРОЗОСОЕДИНEНИЯ (С-нитрозосоединения), содержат в молекуле одну или неск. нитрозогрупп —N=O, связанных с атомами углерода. Известны также N- и О-нитрозосоединения (см. Нитрозамины и Нитриты органические). Обычно Н. существуют в виде равновесной смеси мономера и димера (для последнего характерна геом. изомерия):

http://www.medpulse.ru/image/encyclopedia/1/5/4/9154.jpeg

Назв. мономерных Н. производят прибавлением префикса "нитрозо" к назв. соединения-основы.

В индивидуальном состоянии большинство Н. находятся в виде димеров, однако введение электроноакцепторных заместителей в орг. остаток приводит к преобладанию мономеров (напр., трихлор- и трифторнитрозометаны). В димер-ных Н. транс-изомеры стабильнее цис-изомеров. В р-рах или при нагр. димерные Н. диссоциируют, по крайней мере частично. Вицинальные ароматические Н. или непредельные димерные Н. димеризуются специфически, давая фуроксаны, а перфторалкильные Н. при облучении димеризуются в соответствующие О-нитрозогидроксиламины, напр.:

http://www.medpulse.ru/image/encyclopedia/1/5/5/9155.jpeg

Нитрозогруппа в мономерных и димерных Н.-плоская, напр. для нитрозометана длины связей 0,149 нм (С—М) и 0,122 нм (N—О), угол CNO 112,6°.

Физические свойства. Мономерные Н.-газы или жидкости голубого или зеленого цвета, хорошо раств. во мн. орг. р-рителях, димерные Н.-бесцв. кристаллы, раств., как правило, в полярных р-рителях. Св-ва нек-рых Н. приведены в таблице.

В И К спектрах Н. присутствуют интенсивные полосы, соответствующие валентным колебаниям группы NO: для мономерных алифатических и ароматических Н. при 1540-1620 или 1500-1512 см-1 соотв.; для транс-димеров алифатических и ароматических Н. при 1176-1290 и 1253-1299 см-1; у цис-димеров эти полосы смещены в область больших частот и проявляются в виде дублетов при 1323-1344 и 1330-1420 см-1 (алифатические Н.) и 1389 и 1409 см-1 (ароматические Н.).

СВОЙСТВА НЕКОТОРЫХ НИТРОЗОСОЕДИНЕНИЙ

http://www.medpulse.ru/image/encyclopedia/1/5/6/9156.jpeg


В УФ спектрах мономерных Н. наблюдаются три максимума: 630-790 нм (e http://www.medpulse.ru/image/encyclopedia/1/5/7/9157.jpeg45-60, пhttp://www.medpulse.ru/image/encyclopedia/1/5/8/9158.jpegp-переход), 270-290 нм (ehttp://www.medpulse.ru/image/encyclopedia/1/5/9/9159.jpeg80, оhttp://www.medpulse.ru/image/encyclopedia/1/6/0/9160.jpegp*-переход) и 220 нм (ehttp://www.medpulse.ru/image/encyclopedia/1/6/1/9161.jpeg5.103, пhttp://www.medpulse.ru/image/encyclopedia/1/6/2/9162.jpegp*-пере-ход). Для транс-димеров lмакс 280-300 нм (e http://www.medpulse.ru/image/encyclopedia/1/6/3/9163.jpeg5.103 -— 12.103, phttp://www.medpulse.ru/image/encyclopedia/1/6/4/9164.jpegp*-переход), а для цис-димеров этот максимум сдвинут в коротковолновую область на 10-15 нм.

В спектрах ПМР Н. хим. сдвиги a-Н-атома близки к хим. сдвигам аналогичных протонов в соответствующих нитро-соед., причем они различны для мономеров и цис-, и таранс-димеров Н., что позволяет оценить их количественно в равновесной смеси. В спектре ЯМР на ядрах N хим. сдвиги Н. весьма характерны, хотя и проявляются в широком диапазоне в значительно более сильных полях, чем в соответствующих нитросоед. (5 от 300 до 550 м.д.).

Химические свойства. Особенность алифатических Н., содержащих a-Н-атом,-их необратимая изомеризация в оксимы:

http://www.medpulse.ru/image/encyclopedia/1/6/5/9165.jpeg

Р-ция катализируется основаниями, водой и полярными р-рителями. Окислители (О3, Н2О2, орг. перкислоты, О2 воздуха и др.) окисляют Н. в соответствующие нитросоединения. Восстановление Н. в зависимости от восстановителя приводит к гидроксиламинам [NaBH4, арсенат (III) и т. п.] или к аминам (металл в к-те, Н2 над Ni-Ренея и др.), причем процесс осложняется конденсацией Н. с промежуточными и конечными продуктами соотв. в азокси- и азосоединения. При действии производных Р(III) происходит дезоксигенирование Н. с образованием нитренов http://www.medpulse.ru/image/encyclopedia/1/6/6/9166.jpeg , к-рые далее конденсируются с исходным Н. или вступают во взаимод. с р-рителем.

Н. взаимод. с N,N-дигалогенаминами в присут. солей Сu+ с образованием азоксисоед. RN(O)=NR'. Для Н. характерны р-ции по кратным связям. Так, с олефинами возможны три типа превращений: а) 1,2-присоединение с образованием оксазетидинов; б) 1,4-присоединение (диеновый синтез) с образованием дигидрооксазинов; в) конденсация двух молекул Н. с одной молекулой олефина, приводящая к дигидро-1,3-диокса-2,4-диазинам:

http://www.medpulse.ru/image/encyclopedia/1/6/7/9167.jpeg

Направление р-ции зависит от природы Н. и олефина.

С илидами серы Н. взаимод. по схеме переилидирования, давая нитроны, а с илидами фосфора - по типу р-ции Витти-га, образуя азометины:

http://www.medpulse.ru/image/encyclopedia/1/6/8/9168.jpeg

Ароматические Н. реагируют с соед. с активной метиле-новой группой в присут. основных катализаторов, образуя N-ариламины или нитроны:

http://www.medpulse.ru/image/encyclopedia/1/6/9/9169.jpeg

Н. присоединяют HN3 по связи N=O и нек-рые др. к-ты, а также реактивы Гриньяра.

Третичные и ароматические Н. с активными радикалами R. образуют стабильные нитроксильные радикалы, напр.:

http://www.medpulse.ru/image/encyclopedia/1/7/0/9170.jpeg

Это св-во позволяет использовать Н. в спиновых ловушек методе.

Получение. Общий способ получения Н.-окисление первичных аминов к-той Каро (выход Н. 30-70%) или гидро-ксиламинов орг. перкислотами, Наl2, HgO и др. Можно использовать окисление орг. перкислотами азометинов, нитронов (окислителем м. б. также О3) и диметилсульфид-иминов (в неполярном р-рителе), напр.:

http://www.medpulse.ru/image/encyclopedia/1/7/1/9171.jpeg

Н. получают также введением нитрозогруппы в молекулу орг. соед. путем замещения атома водорода (нитрозирование). Для синтеза функционально замещенных алифатических Н. используют нитрозирование соед., содержащих активирующие группы [COR, NO2, CN, C(R)=NH] у нитро-зируемого атома углерода; нитрозирующие агенты-N2O3 или NaNO2/H2SO4. Нитрозирование этими же реагентами вторичных нитросоед.- общий способ получения псевдонит-ролов RR'C(NO)NO2. Для получения алифатических Н. можно использовать радикальное нитрозирование углеводородов, а также действие NO на алхилиодиды (в синтезе перфторалкилнитрозосоед.), напр.:

http://www.medpulse.ru/image/encyclopedia/1/7/2/9172.jpeg

При действии на кетоксимы галогенов образуются a-хлор-нитрозосоед., в присут. N2O4 — псевдонитролы, при действии тетраацетата Pb-a-ацетоксинитрозосоед., напр.:

http://www.medpulse.ru/image/encyclopedia/1/7/3/9173.jpeg

Вицинальные хлор- или нитрозамещенные Н. получают с хорошим выходом присоединением соотв. NOCl или N2O3 к олефинам. При действии этих же реагентов на Ag-соли или ангидриды карбоновых к-т карбоксильная группа заменяется на группу NO, напр.:

http://www.medpulse.ru/image/encyclopedia/1/7/4/9174.jpeg

Однако этот метод синтеза Н. менее распространен.

Нек-рые Н. можно получить действием NOCl на ртутьорг. производные, напр.:

http://www.medpulse.ru/image/encyclopedia/1/7/5/9175.jpeg

Специфич. методы синтеза ароматических Н.-нитрозирование ароматич. аминов или фенолов действием NaNO2/ H2SO4 с образованием соотв. пара- и орто-замещенных продуктов. Для получения ароматических Н. иногда используют внутримол. диспропорционирование, напр.:

http://www.medpulse.ru/image/encyclopedia/1/7/6/9176.jpeg

Анализ и применение. Для обнаружения Н. используют их взаимод. с фенолом (резорцином) и конц. H2SO4, приводящее к появлению темно-красного окрашивания, переходящего в темно-голубое после добавления водного р-ра NaOH (р-ция Либермана), или появление интенсивного голубого окрашивания при обработке Н. смесью H2SO4 с дифениламином. Количественно Н. определяют волюмометрически по выделению азота после обработки Н. фенилгидразином.

Н. применяют как полупродукты в синтезе гетероциклич. соед., аминокислот и др. Нитрозофенолы используют для получения красителей и лек. препаратов, фторсодержащие и нек-рые др. Н.-в синтезе эластомеров (см. Фторкаучуки)и для отверждения полимерных композиций, напр. в произ-ве термостойких каучуков.

Нек-рые Н. обладают мутагенной и канцерогенной активностью, а также вызывают кожные заболевания.

Лит.: Химия нитро- и нитрозогрупп, пер. с англ., т. 1, М., 1972, с. 100-19, 158-224; т. 2, М., 1973, с. 176-220; Общая органическая химия, пер. с англ., т. 3, М., 1982, с. 372-99; Беляев Е. Ю., Гидаспов Б. В., Ароматические нитрозо-соединения, Л., 1989. С. Л. Иоффе.



-нитрозодиметиланилин Набухание Надбензойная кислота Надкислоты Надсмольная вода Надуксусная кислота Надёжность Назарова реакция Наирит Найлон Нанесенные катализаторы Напалм Наполненные каучуки Наполненные полимеры Наполнители Напряжение молекул Напыление вакуумное Насадочные аппараты Насосы Насыщенные углеводороды Натриевая селитра Натрииорганические соединения Натрий Натрия азид Натрия алюминаты Натрия бораты Натрия борогидрид Натрия бромид Натрия гидрокарбонат Натрия гидроксид Натрия гипохлорит Натрия иодид Натрия карбонат Натрия нитрат Натрия нитрит Натрия оксибутират Натрия оксид Натрия пероксид Натрия пероксоборат Натрия пероксокарбонат Натрия перхлорат Натрия силикаты Натрия сульфат Натрия сульфиды Натрия сульфит Натрия супероксид Натрия тиосульфат Натрия тиоцианат Натрия фосфаты Натрия фторид Натрия хлорат Натрия хлорид Натрия хромат Натрия цианат Натрия цианид Нафталевый ангидрид Нафталин Нафталинкарбоновые кислоты Нафталинсульфокислоты Нафталинсульфонаты Нафтеновые кислоты Нафтены Нафтизин Нафтиламинсульфокислоты Нафтиламины Нафтиридины Нафтолсульфокислоты Нафтолы Нафтохиноны Невалентные взаимодействия Негативный процесс Нееля точка Нежесткие молекулы Незаменимые жирные кислоты Нейзильбер Нейраминидаза Нейролептические средства Нейропептиды Нейротензин Нейтрино Нейтрон Нейтронные источники Нейтронография Некаль Нематоциды Ненасыщенные углеводороды Неницеску реакции Необратимые реакции Неодим Неон Неопределённостей соотношение Неорганическая химия Неорганические волокна Неорганический синтез Неофолион Непредельные углеводороды Нептуний Неразрушающий анализ Нернста уравнение Нерол Неролидол Неролин Несеребряная фотография Несмеянова реакция Нестехиометрия Нетканые материалы Нефа реакция Нефелин Нефелометрия и турбидиметрия Нефтепереработка Нефтеполимерные смолы Нефтепродукты Нефтехимия Нефть Нефтяные масла Нефтяные растворители Нефтяные смолы Неэмпирические методы Ниацин Нигрозины Нигрол Низин Никель Никельорганические соединения Никеля галогениды Никеля карбонат Никеля нитрат Никеля оксиды Никеля сплавы Никеля сульфат Никеля сульфиды Никеля тетракарбонил Никотин Никотинамидные коферменты Никотиновая кислота Нильсборий Нингидриновая реакция Ниобаты Ниобий Ниобийорганические соединения Ниобия галогениды Ниобия оксиды Ниобия сплавы Ниоксим Ниренштайна реакция Нистатин Нитевидные кристаллы Нитразепам Нитрамины Нитратредуктазы Нитраты неорганические Нитраты органические Нитрены Нитриды Нитрила соединения Нитрилы Нитрильные каучуки Нитриты неорганические Нитриты органические Нитроалкидные лаки Нитроаминофенолы Нитроаммофосфаты Нитроанизолы Нитроанилинсульфокислоты Нитроанилины Нитроантрахиноны Нитробензойные кислоты Нитробензол Нитрование Нитрогеназа Нитроглицерин Нитрозамины Нитрозила соединения Нитрозирование Нитрозодифениламины Нитрозокрасители Нитрозонафтолы Нитрозосоединения Нитрозофенолы Нитрокрасители Нитроксильные радикалы Нитролаки Нитрометан Нитрон Нитронафталины Нитроновые кислоты Нитроны Нитросоединения Нитротолуолы Нитрофенетолы Нитрофенолы Нитрофосфаты Нитрохлорбензолы Нитроцеллюлошые лаки Но-шпа Нобелий Новобиоцин Новокаин Новокаинамйд Новолачные смолы Номекс Номенклатура стереохимическая Нонаналь Ноотропные препараты Нопол Нор Норадреналин Норборнадиен Норборнан Норборнен Норвалин Норлейцин Нормальность Нормальные элементы Норриша реакция Носители Нуклбазы Нуклеиновые кислоты Нуклеозидные антибиотики Нуклеозиды Нуклеопротеиды Нуклеотиды Нуклеофильные реакции Нуклид Ньюмена формулы Ньюмена-кворта реакция Рн-метрия