Словарь научных терминов

Молекулярные интегралы

МОЛЕКУЛЯРНЫЕ ИНТЕГРАЛЫ в квантовой химии, название интегральных выражений (интегралов), к-рые используются для записи в матричной форме электронного ур-ния Шрёдингера, определяющего электронные волновые ф-ции многоэлектронной молекулы (мол. системы). Подынтегральными ф-циями в М. и. являются атомные или мол. орбитали (волновые ф-ции) отдельных электронов либо орбитали, преобразованные теми операторами, к-рые входят в оператор Гамильтона и соответствуют определенным физ. величинам (напр., потенциалу взаимод. электронов, дипольному моменту и др.). Интегрирование производят по всему объему, в к-ром вероятность обнаружения каждого электрона, определяемая интегралом по этому объему от произведения его волновой ф-ции j на комплексно-сопряженную величину j*, равна 1. М. и. обычно имеют следующий вид:

https://www.medpulse.ru/image/encyclopedia/6/5/1/8651.jpeg

(т. наз. о д н о э л е к т р о н н ы е и н т е г р а л ы) либо

https://www.medpulse.ru/image/encyclopedia/6/5/2/8652.jpeg

(т. наз. д в у х э л е к т р о н н ы е и н т е г р а л ы). В этих выражениях ja(1), jb(1), jс(2) и jd (2) - атомные или мол. орбитали, зависящие от переменных первого (1) или второго (2) электрона, dt1 и dt2-элементы объема для этих электронов, https://www.medpulse.ru/image/encyclopedia/6/5/3/8653.jpeg - одноэлектронный, а https://www.medpulse.ru/image/encyclopedia/6/5/4/8654.jpeg - двухэлектронный операторы, к-рые зависят от переменных соотв. одного или двух электронов и действуют на волновые ф-ции jb(1) и jb(1)jd(2) (см. Квантовая механика).

Классификация одно- и двухэлектронных М. и. связана с видом подынтегральных ф-ций и операторов. Так, в простейшем случае, когда https://www.medpulse.ru/image/encyclopedia/6/5/5/8655.jpeg-единичный оператор (умножение на единицу), т.е., по существу, в интеграле (1) оператор отсутствует, получающийся одноэлектронный М. и. называют и н т е г р а л о м п е р е к р ы в а н и я орбиталей jа(1) и jb(1). По значению интегралов перекрывания атомных орбиталей часто судят о прочности хим. связи между атомами А и В, если ja(1) и jb(1)- атомные орбитали, соответствующие этим атомам. Если https://www.medpulse.ru/image/encyclopedia/6/5/6/8656.jpeg = — Zce2/R1c-oпepaтор потенциальной энергии взаимод. электрона 1 и ядра С, заряд к-рого Zc (R1c-расстояние между электроном 1 и ядром С), соответствующий М. и. называют интегралом электрон-я д е р н о г о в з а и м о д е й с т в и я. К числу одноэлектронных М. и. относят также интегралы кинетич. энергии, интегралы дипольного момента и др.

В выражениях для двухэлектронных М. и. наиб. часто встречается оператор кулоновского отталкивания электронов 1 и 2, т.е. https://www.medpulse.ru/image/encyclopedia/6/5/7/8657.jpeg(1, 2) = е2/r12, где r12-расстояние между электронами. При этом М. и. вида

https://www.medpulse.ru/image/encyclopedia/6/5/8/8658.jpeg

наз. кулоновскими. Они соответствуют классич. элект-ростатич. взаимодействию двух зарядов, один из к-рых распределен в пространстве с плотностью rа(1) = j*a(1) х х ja(1), а другой-с плотностью rb (2) = jb* (2) jb (2). Если переставить индексы а и b у ф-ций, следующих за символом оператора e2/r12, получаются М. и. вида

https://www.medpulse.ru/image/encyclopedia/6/5/9/8659.jpeg

к-рые наз. о б м е н н ы м и. Появление обменных М. и. в выражениях для энергии и для др. св-в многоэлектронных мол. систем связано с принципом Паули и не имеет аналогии в классич. теории (см. Обменное взаимодействие).

М. и. различают также по локализации орбиталей jа, jb,... Если эти орбитали локализованы у одного из атомных ядер молекулы (или в области между ядрами), т.е. если они относятся к одному центру (ядру или к.-л. точке в пространстве между ядрами), то М. и. наз. одноцентровыми; если ja относится к центру А, а jb-к центру В, говорят о д в у х ц е н т р о в ы х М. и., и т.д. При этом в число центров включаются и те, от переменных к-рых зависят также операторы А(1)или В(1,2); так, если A(1)-упомянутый выше оператор потенциальной энергии взаимод. электрона 1 с ядром С, то это ядро также считается центром для М. и.

Нек-рые М. и. с одинаковыми названиями имеют разл. смысл в разных квантовохим. методах. Так, в методе Хюкке-ля резонансными М. и. наз. ненулевые недиагональные матричные элементы эффективного одноэлектронного гамильтониана (см. Молекулярных орбиталей методы), а в полуэмпирических методах типа методов полного пренебрежения дифференц. перекрыванием резонансные М. и.-лишь такие слагаемые недиагональных матричных элементов фо-киана, к-рые при конкретных расчетах заменяются на те или иные комбинации эмпирич. параметров. В валентных связей методе обменными М. и. наз. матричные элементы https://www.medpulse.ru/image/encyclopedia/6/6/0/8660.jpeg двухэлектронного гамильтониана H(1, 2) в базисе атомных орбиталей, что отличается от выражения (3) для обменных М. и. в методах мол. орбиталей.

Расчет М. и. всегда представлял собой одну из важнейших вычислит. проблем квантовой химии, к-рая стала особенно острой в связи с развитием и широким применением неэмпирических методов. Для упрощения вычислений проводят поиск оптимальных базисных ф-ций, к-рые позволяют получать наиб. простые ф-лы для расчета М. и. В частности, для многоатомных молекул оптимальными базисными ф-циями оказались орбитали гауссова типа (см. Орбиталъ). Еще более трудная проблема - рост числа М. и. с увеличением кол-ва базисных орбиталей: если число последних - М, то число М. и. превышает М4/8. При Мhttps://www.medpulse.ru/image/encyclopedia/6/6/1/8661.jpeg 102 приходится рассчитывать 107-108 М. и. Поскольку обычно мол. системы рассматривают в адиабатическом приближении, требующем вычислений в отдельности для каждой фиксированной геом. конфигурации ядер, а число таких конфигураций для многоатомных молекул достаточно велико даже при описании локальных участков поверхности потенциальной энергии, то становится ясным, какие трудности связаны с расчетами М. и. или пересчетом на каждом шаге итераций. Именно из-за этих трудностей активно разрабатывают полуэмпирич. методы, основанные, напр., на полном или частичном пренебрежении дифференц. перекрыванием. В подобных методах число М. и. увеличивается с ростом числа М базисных ф-ций не быстрее, чем М2. В полуэмпирич. методах используют модельные представления, согласно к-рым отдельные М. и: либо нек-рые их комбинации рассматривают как параметры, имеющие определенный физ. смысл. Подобный подход позволяет наглядно интерпретировать расчетные результаты и сопоставлять их для разных мол. систем.

Лит. см. при ст. Квантовая химия. Н. Ф. Степанов.


-метилацетофенон -метоксиацетофенон 2-меркаптобензотиазол 2-меркаптоэтиламин 2-метил-5-винилпиридин N-метилпирролидон Магнезоны Магнетохимия Магниевые удобрения Магний Магнийорганические соединения Магнитная восприимчивость Магнитная постоянная Магнитно-спиновые эффекты Магнитные материалы Магнитный момент Магния галогениды Магния гидроксид Магния карбонат Магния нитрат Магния оксид Магния перхлорат Магния сплавы Магния сульфат Мазут Майзенхаймера перегруппировка Мак-лафферти перегруппировка Мак-фадьена-стивенса реакция Макарова фазы Маковое масло Макро- и микрокомпоненты Макрокинетика Макролиды Макромолекула Макромономеры Макропористые ионообменные смолы Макрорадикалы Максимальная работа реакции Малапрада реакция Малахитовый зеленый Малеиновая и фумаровая кислоты Малеиновый ангидрид Малоновая кислота Малоновый эфир Малононитрил Мальтены Мальтоза Мальтол Манганаты Манганин Маннаны Маннит Манниха реакция Манноза Маноилоксиды Манометры Маноол Марганец Марганецорганические соединения Марганца карбонат Марганца карбонилы Марганца нитрат Марганца оксиды Марганца сульфат Марганцевые удобрения Маскирование Маслонаполненные каучуки Маслостойкость Масляная кислота Масляные краски Масляные лаки Масляный альдегид Масс-спектрометрия Массовое число Массообмен Мастики Мастикс Масштабный переход Маточные средства Матрица плотности Матричные рибонуклеиновые кислоты Матричный синтез Машинные масла Меди ацетаты Меди гидроксиды Меди карбонаты Меди нитрат Меди оксиды Меди сплавы Меди сульфат Меди сульфиды Меди хлориды Медицинские масла Медноаммиачные волокна Медные удобрения Медь Медьорганические соединения Меервейна реакция Межгалогенные соединения Межкристаллитная коррозия Межмолекулярные взаимодействия Межфазная поликонденсация Межфазные скачки потенциала Межфазный катализ Мезаконовая кислота Мезидин Мезитила окись Мезитилен Мезо Мезоионные соединения Мезоксалевая кислота Мезомерия Мезомерный эффект Мезонная химия Мейера - шустера перегруппировка Мейера реакция Меламин Меланины Мелем Мельхиор Мембранный катализ Мембранный потенциал Мембраны биологические Мембраны жидкие Мембраны ионообменные Мембраны разделительные Менделевий Ментадиены Ментаны Ментены Ментол Ментон Меншуткина реакция Мепробamat Меркаптаны Меркаптохинолины Меркуриметрия Мерсеризация Мета Метаболизм Метакриламид Метакриловая кислота Метакрилонитрил Металепсия Металлиды Металлизация полимеров Металлилхлорид Металлирование Металлическая связь Металлические волокна Металлические кристаллы Металлические радиусы Металлические соединения Металлов окисление Металлокомплексный катализ Металлопласты Металлополимеры Металлопротеиды Металлотермия Металлоцены Металлургия Металлы Металлы органические Метальдегид Метан Метанол Метансульфокислота Метансульфохлорид Метатезис Метафосфаты органические Метил-b-нафтилкетоh Метилакрилат Метилаль Метиламины Метилацетат Метилацетилен Метилбензолсульфонат Метилвинилкетон Метилдихлорфосфат Метилдихлорфосфин Метилдихлорфосфит Метилдихлорфосфонат Метилдофа Метиленовый голубой Метиленхлорид Метилиафталины Метилизобутилкетон Метилизотиоцианат Метилизоцианат Метилметакрилат Метилнонилацетальдегид Метиловый спирт Метилсерная кислота Метилстиролы Метилтетрафторфосфоран Метилтимоловый синий Метилфторид Метилхлорид Метилхлорсиланы Метилцеллюлоза Метилэтилбензолы Метилэтилкетон Метиновые красители Метионин Метионинметилсульфонийхлорид Механизм реакции Механические процессы Механические свойства Механохимия Меченые атомы Меченые соединения Мешалки Микотоксины Микробиологический синтез Микроволновая спектроскопия Микрография Микрокапсулирование Микрокристаллоскопия Микроудобрения Микрофильтрация Микрохимический анализ Микроэлементы Микроэмульсии Миллона реакция Минерал Минерализация Минеральные воды Минеральные удобрения Минорные нуклеозиды Миоглобин Миозин Мирцен Мирценаль Митомицины Михаэлиса-беккера реакция Михаэля реакция Михлера кетон Мицеллирный катализ Мицеллообразование Мицеллы Мицеллярные системы Мицунобу реакция Многокомпонентные системы Многофотонные процессы Мовеин Модакриловые волокна Моделирование Модификация белков Модифицирование древесины Модифицирование полимеров Молекула Молекулярная биология Молекулярная динамика Молекулярная масса Молекулярная масса полимера Молекулярная механика Молекулярность реакции Молекулярные интегралы Молекулярные комплексы Молекулярные кристаллы Молекулярные модели Молекулярные соединения Молекулярные спектры Молекулярный анализ Молибдаты Молибден Молибдена карбонилы Молибдена оксиды Молибдена сплавы Молибдена фториды Молибдена хлориды Молибденовые удобрения Моллюскоциды Молочная кислота Моляльность Молярность Монель-металл Моноаминоксидазы Моноглим Монокристаллов выращивание Монокристаллы Мономеры Мономолекулярные реакции Мономолекулярный слой Мононить Моносахариды Монофенолмонооксигеназы Монохлорукссусная кислота Моноэтаноламин Морин Морозостойкость Морская коррозия Морфин Морфинановые алкалоиды Морфолин Морфотропия Моторные масла Моторные топлива Мочевина Мочевины цикл Мощность дозы Моющее действие Мукайямы реакция Мукополисахариды Мультиплетность Мумия Муравьиная кислота Муравьиный альдегид Мурексид Мускусы Мутагены Мутаротация Мутации Мыла Мылонафт Мышьяк Мышьяка гидрид Мышьяка хлориды Мышьякорганические соединения Мюон Мюоний Мягчители Мёссбауэровская спектроскопия