Словарь научных терминов
Моделирование

МОДЕЛИРОВАНИЕ в химической технологии, метод исследования химико-технол. процессов или систем путем построения и изучения их моделей, к-рые отличаются от объектов М. масштабами или физ. природой происходящих в них явлений, но достаточно точно (адекватно) отображающих представляющие интерес св-ва этих объектов. М. используют для решения разл. задач, важнейшие из к-рых: 1) исследование новых процессов; 2) проектирование произ-в; 3) оптимизация отдельных аппаратов и технол. схем; 4) выявление резервов мощности и отыскание наиб. эффективных путей модернизации действующих произ-в; 5) оптим. планирование произ-в; 6) разработка автоматизир. систем управления проектируемыми произ-вами; 7) построение автоматизированных систем научных исследований.

М. основано на св-ве подобия разных объектов, к-рое м. б. физическим и математическим. Процессы в физически подобных объектах имеют физ. природу. В математически подобных объектах процессы описываются одинаковыми ур-ниями.

Физическое М. Метод сводится обычно к изучению моделей, к-рые отличаются от объекта М. масштабами (напр., лаб. и пром. реакторы). В основе физического М. лежат подобия теория и анализ размерностей.

Необходимым условием физического М. является равенство в объекте и его модели т. наз. критериев подобия, представляющих собой определенные безразмерные комбинации разл. физ. величин, оказывающих влияние на параметры объекта и модели. На практике обеспечить указанное условие в случае равенства неск. критериев подобия чрезвычайно трудно, если только не делать модель тождественной объекту М. Поэтому используется приближенное физическое М., при к-ром второстепенные процессы, происходящие в объекте, либо не моделируются совсем, либо моделируются приближенно. Напр., массообменная тарельчатая колонна моделируется насадочной лаб. колонкой; при этом подобие гидродинамич. обстановки в объекте и модели игнорируется, а моделируется лишь разделит. способность аппарата, определяемая термодинамич. закономерностями межфазного равновесия.

Достоинства физического М.: возможность изучения объектов с меньшими затратами (сырья, энергии, времени); возможность исследования объектов, в к-рых физ.-хим. сущность процессов мало изучена; возможность проведения на модели измерений, слишком сложных на объекте М.

Недостатки метода: возможность проявления собств. св-в модели вследствие несоответствия критериев подобия объекта и модели (напр., разл. условия перемешивания); необходимость применения аналогичных контрольно-изме-рит. приборов на модели и объекте; относит. сложность построения физ. модели, обычно представляющей собой значительно уменьшенную копию объекта; трудность достоверной экстраполяции результатов на др. масштабы из-за полного отсутствия надежных критериев достоверности масштабного перехода. Несмотря на перечисл. недостатки, физическое М. часто служит единств. ср-вом исследования химико-технол. процессов (особенно мало изученных). При этом оно во мн. случаях предшествует математическому М., являясь источником эксперим. данных для построения и проверки мат. моделей.

Математическое М. Метод сводит исследование св-в объекта к изучению св-в мат. модели, представляющей собой систему мат. ур-ний (т. наз. мат. описание), к-рая отражает поведение объекта М. (см. Кибернетика). Мат. модель дает возможность прогнозировать это поведение при изменяющихся условиях функционирования объекта М. В данном случае аналогом эксперимента на модели при физическом М. служит вычислит. эксперимент, к-рый проводится, как правило, на ЭВМ.

В зависимости от целей и исходной информации об объекте М. и условиях его функционирования применяют различные по форме и структуре мат. описания модели. К числу наиб. распространенных типов моделей относят стохастические, статистические и детерминированные.

С т о х а с т и ч е с к и е м о д е л и. Строятся на основе вероятностных представлений о процессах в объекте М. и позволяют прогнозировать его поведение путем вычисления ф-ций распределения вероятностей для переменных, характеризующих исследуемые св-ва (при заданных ф-циях распределения вероятностей входных и возмущающих переменных).

Важнейшая область применения стохастич. моделей-М. больших систем (крупных агрегатов, химико-технол. процессов, произ-в, предприятий и др.). При этом указанные модели используют для анализа функционирования объектов в условиях случайных возмущений, для решения сложных задач календарного планирования работы предприятия, исследования возможных последствий непредсказуемых аварийных отказов технол. оборудования, выявления наиб. эффективных схем резервирования для повышения надежности хим. произ-ва в целом и т.д.

С т а т и с т и ч е с к и е м о д е л и. Строятся на основе эксперим. данных, полученных на действующем объекте (в условиях влияния на него случайных возмущений), и представляют собой системы соотношений, к-рые связывают значения выходных и входных переменных объекта. Вид этих соотношений обычно задается априорно, и определению подлежат лишь значения нек-рых параметров в принятых зависимостях. Наиб. распространена зависимость, задаваемая в форме полинома степени не более 2.

При определении параметров этих моделей необходимо использовать аппарат мат. статистики, поскольку на результаты экспериментов и измерений, как правило, накладываются случайные ошибки, а также действие неучтенных факторов.

В случае построения статистич. моделей на основе данных, к-рые найдены в т. наз. пассивном эксперименте (регистрация значений входных и выходных переменных осуществляется без к.-л. вмешательства в процесс), рассчитываемые параметры моделей оказываются, как правило, статистически зависимыми, т.е. коррелированными. Это значительно усложняет точную интерпретацию полученных результатов экспериментов и ограничивает прогнозирующие возможности модели. Более надежные данные м. б. получены, если допустимо планомерное варьирование входных переменных в желаемых пределах путем применения спец. решений, или планов (напр., т. наз. ортогональных, обеспечивающих статистич. независимость определяемых параметров моделей).

Этапы общей процедуры построения любой статистич. модели: 1) расчет их параметров, 2) проверка значимости найденных значений параметров, 3) проверка адекватности полученной модели объекту. Для проверки значимости параметров и адекватности модели обычно используют статистич. критерии проверки гипотез. Если к.-л. параметр модели при проверке оказывается незначимым, то его значение в ур-ниях модели полагают равным нулю, что приводит к соответствующему упрощению модели.

Адекватность мат. модели изучаемому объекту проверяется путем сравнения эксперим. данных, полученных на объекте, и результатов М. с привлечением методов статистич. проверки гипотез. В качестве критериев адекватности чаще всего используют квадратичные выражения, характеризующие отклонения опытных данных от расчетных.

Численное значение критерия адекватности само по себе, однако, еще не дает возможности сделать к.-л. заключение об адекватности модели и должно быть обязательно соотнесено со всеми статистич. оценками измерений на объекте М. Если в результате проверки адекватности модель оказывается неадекватной, это означает, что к.-л. существ. входные переменные, оказались не включенными в модель или точность эксперим. данных недостаточна для установления искомой зависимости.

Достоинства статистич. моделей: возможность применения к объектам с неизвестными механизмами происходящих в них процессов, а также в случае больших систем, детальное описание к-рых вызывает серьезные мат. трудности. Недостатки: сложность обобщения получаемых результатов даже при изучении однотипных объектов, невозможность обоснованной экстраполяции св-в модели за пределы измеренной области изменения входных переменных, трудность построения таких моделей для нестационарных объектов с большим временным запаздыванием р-ции на входные возмущения.

Важнейшие области применения статистич. моделей-планирование оптим. условий экспериментов и описание функционирования отдельных аппаратов или участков произ-ва для решения сложных задач управления и оптимизации.

Д е т е р м и н и р о в а н н ы е м о д е л и. Строятся на основе математически выраженных закономерностей, описывающих физ.-хим. процессы в объекте М. Они позволяют однозначно находить значения переменных (к-рые характеризуют представляющие интерес св-ва объекта) для любой заданной совокупности значений входных переменных и конструктивных параметров объектов М. и являются основой для решения задач масштабного перехода. Для вычислит. экспериментов с детерминир. моделями реальных объектов, как правило, требуются ср-ва вычислит. техники; при этом особое внимание должно уделяться разработке эффективных алгоритмов решения системы ур-ний мат. описания.

Для большинства процессов хим. технологии характерно наличие взаимод. потоков в-в, в к-рых возможны также хим. превращения. Поэтому в основу мат. описания, как правило, кладутся ур-ния балансов масс и энергии в потоках, записанные с учетом их гидродинамич. структуры.

Ур-ния гидродинамики реальных потоков, как правило, чрезвычайно сложны и имеют очень сложные граничные условия (напр., ур-ния Навье - Стокса). Это приводит к необходимости использовать в мат. описании конкретных потоков упрощенные описания гидродинамики на основе идeализир. моделей - идеального смешения, идеального вытеснения и промежуточной, наз. диффузионной, к-рая в большинстве случаев более близка к реальным условиям.

В тех случаях, когда и диффузионная модель неудовлетворительна, приходится применять более сложные комбинир. модели, определяющие структуру потока как нек-рое сочетание указанных идеальных моделей. При наличии в процессе неск. потоков в-в, а также потоков, состоящих из неск. фаз (напр., газ - жидкость, жидкость - твердое и т.п.), для каждого потока и для каждой фазы обычно записываются свои ур-ния гидродинамики.

Ур-ния балансов масс и энергии, записанные с учетом принятых гидродинамич. моделей потоков, включают источники в-ва и энергии в потоках, интенсивность к-рых определяется конкретными физ.-хим. процессами, происходящими в объекте М. Поэтому в состав мат. описания входят также ур-ния для скоростей хим. р-ций, массо- и теплообмена и др.

Кроме того, мат. описание включает теоретич., полуэм-пирич. или эмпирич. соотношения, характеризующие разл. зависимости, напр. теплоемкости от состава потока, коэф. массопередачи от скоростей потоков фаз и т.д.

При построении детерминир. модели важное значение имеет разумное сочетание требуемой сложности модели с допустимыми упрощениями. Слишком сложное мат. описание, учитывающее множество, возможно, второстепенных факторов и явлений, может оказаться неприемлемым из-за необходимости выполнения огромного объема вычислений при решении входящих в него ур-ний. Наоборот, слишком yпрощенное мат. описание может привести к принципиально неправильным выводам о св-вах объекта М.

А л г о р и т м р е ш е н и я системы ур-ний мат. описания, реализующий возможность проведения вычислит. экспериментов с мат. моделью, существенно зависит от типа входящих в нее ур-ний. Последний, в свою очередь, определяется принятыми исходными допущениями и задачами вычислит. эксперимента. Принято различать стационарные и нестационарные модели, в к-рых параметры соотв. не изменяются и изменяются во времени. Кроме того, принято выделять модели с распределенными и сосредоточенными параметрами, соотв. изменяющимися и не изменяющимися в пространстве. Основу мат. описания стационарных моделей с сосредоточенными параметрами составляют системы, в к-рых отсутствуют дифференц. ур-ния, поскольку переменные модели не зависят от пространств. координат и времени. Обыкновенные дифференц. ур-ния используют в моделях для описания нестационарных режимов в объектах при допущении сосредоточенности параметров или для описания стационарных режимов в объектах с параметрами, распределенными только по одной координате. Это отвечает зависимости переменных модели от одной пространств. координаты либо от времени.

Для мат. описания разл. нестационарных режимов объектов М., характеризующихся распределенными параметрами, а также стационарных режимов в случае распределенности более чем по одной координате, как правило, применяют дифференц. ур-ния в частных производных. В последних искомые переменные являются ф-циями неск. независимых переменных, что и определяет возможность применения этих ур-ний для объектов рассматриваемого класса.

Методы прикладной математики позволяют решать широкий круг задач вычислит. эксперимента. С помощью этих методов для любой задачи составляют алгоритм ее решения-набор инструкций, определяющих последовательность операций, к-рые позволяют из исходных данных получить искомый результат. При построении конкретного алгоритма, как правило, используют специфич. особенности решаемой задачи для создания эффективных (обычно итерационных) схем решения, в к-рых общие методы применяют для решения подзадач отдельных этапов общего алгоритма. Пример-при построении достаточно полной детерминир. мат. модели тарельчатой колонны для ректификации многокомпонентной смеси используют мат. описание, в к-рое включают ур-ния материальных балансов компонентов смеси для всех тарелок колонны, кипятильника и конденсатора; ур-ния тепловых балансов для тех же элементов; ур-ния, определяющие разделит. способность тарелок; описание условий парожидкостного равновесия; соотношения для расчета энтальпий потоков жидкости и пара.

В общем случае решение полной системы ур-ний мат. описания сводится к решению системы нелинейных ур-ний высокого порядка относительно неизвестных значений переменных, напр. концентраций компонентов, т-р, потоков пара и жидкости на каждой тарелке и т.п. Выбор алгоритма решения задачи в значит. степени обусловливает объем памяти ЭВМ, необходимый для реализации алгоритма. Так, для случая ректификации смеси 5 компонентов в колонне с 50 тарелками необходимо размещать в памяти ЭВМ более 500 тыс. чисел, что и определяет класс машины, к-рую можно использовать для решения этой задачи. Вместе с тем, для рассматриваемой системы ур-ний мат. описания можно предложить достаточно эффективные алгоритмы, сводящие решение этой нелинейной системы к спец. итерационной процедуре. Необходимый объем памяти ЭВМ при этом значительно сокращается и для приведенного примера не превышает 800 чисел.

И д е н т и ф и к а ц и я м о д е л е й. При неудовлетворит. адекватности априорно построенной мат. модели решается задача ее идентификации, т. е. уточнения заданных приближенно значений параметров и, возможно, вида нек-рых зависимостей, включенных в состав мат. описания. Методы идентификации мат. моделей отличаются большим разнообразием, и выбор самого подходящего из них в каждом конкретном случае существ. образом определяется объектом М., а также имеющимися в распоряжении исследователя ресурсами. При этом учитывают возможность постановки не реализуемых по разным причинам на самом объекте исследования спец. экспериментов на физ. моделях; возможность использования для коррекции результатов опытов, полученных на объекте М. при проверке адекватности модели и т. п. Задача идентификации модели обычно сводился к задаче минимизации критерия адекватности объекту путем подбора подходящих значений уточняемых параметров и вида вызывающих сомнение зависимостей. При этом решение задачи минимизации принятого критерия адекватности, рассматриваемого как ф-ция параметров мат. модели, как правило, представляет собой достаточно трудную вычислит. проблему. Последняя осложнена специфич. "овражным" характером минимизируемой ф-ции и, следовательно, большим объемом необходимых вычислений (см. Оптимизация).

Важнейшие области применения детерминир. моделей-М. и оптимизация действующих аппаратов и произ-в, проектирование новых произ-в и предприятий, разработка систем автоматизир. управления аппаратами и произ-вами, автоматизация научного эксперимента. При М. и оптимизации действующих произ-в и предприятий обычно прежде всего решается задача построения в достаточной мере адекватной мат. модели объекта исследования. С этой целью максимально используются эксперим. данные, получаемые на действующих установках при их нормальной эксплуатации, особенно при отклонениях от регламентного технол. режима. Идентификация мат. моделей, как правило, ведется путем минимизации соответствующего критерия адекватности. Послед. выработка оптим. решений для моделируемого процесса производится с использованием методов оптимизации. Применение детерминир. мат. моделей при проектировании новых произ-в наиб. эффективно при наличии в достаточной мере адекватных моделей входящих в него процессов. При этом формально математически задача проектирования эквивалентна задаче идентификации мат. модели минимизацией критерия адекватности с тем отличием, что уточняются конструктивные и режимные параметры установок для достижения миним. отклонений от заданных проектных показателей. Если адекватные мат. модели проектируемых установок отсутствуют, то для их получения необходимы соответствующие эксперим. исследования.

Разработка систем автоматизир. управления (САУ), как и проектирование, требует адекватных мат. моделей (не обязательно детерминированных). Обычно рассматриваются два аспекта этой задачи-синтез структуры САУ и определение параметров ее настройки в зависимости от условий работы. При использовании в составе САУ ср-в вычислит. техники для выработки стратегии управления часто применяют мат. модели технол. установок. Для повышения точности САУ используют т. наз. адаптивные модели, параметры к-рых подстраиваются по заданной оценке адекватности при эксплуатации системы. В задачах автоматизации эксперимента физ. и мат. модели, по существу, объединяются в одной опытной установке, целевое назначение к-рой- получение достаточно адекватной мат. модели исследуемого процесса с миним. затратами сырья, энергии и времени.

Лит. см. при статьях Кибернетика, Оптимизация, Управление.

А. И. Бояринов.


-метилацетофенон -метоксиацетофенон 2-меркаптобензотиазол 2-меркаптоэтиламин 2-метил-5-винилпиридин N-метилпирролидон Магнезоны Магнетохимия Магниевые удобрения Магний Магнийорганические соединения Магнитная восприимчивость Магнитная постоянная Магнитно-спиновые эффекты Магнитные материалы Магнитный момент Магния галогениды Магния гидроксид Магния карбонат Магния нитрат Магния оксид Магния перхлорат Магния сплавы Магния сульфат Мазут Майзенхаймера перегруппировка Мак-лафферти перегруппировка Мак-фадьена-стивенса реакция Макарова фазы Маковое масло Макро- и микрокомпоненты Макрокинетика Макролиды Макромолекула Макромономеры Макропористые ионообменные смолы Макрорадикалы Максимальная работа реакции Малапрада реакция Малахитовый зеленый Малеиновая и фумаровая кислоты Малеиновый ангидрид Малоновая кислота Малоновый эфир Малононитрил Мальтены Мальтоза Мальтол Манганаты Манганин Маннаны Маннит Манниха реакция Манноза Маноилоксиды Манометры Маноол Марганец Марганецорганические соединения Марганца карбонат Марганца карбонилы Марганца нитрат Марганца оксиды Марганца сульфат Марганцевые удобрения Маскирование Маслонаполненные каучуки Маслостойкость Масляная кислота Масляные краски Масляные лаки Масляный альдегид Масс-спектрометрия Массовое число Массообмен Мастики Мастикс Масштабный переход Маточные средства Матрица плотности Матричные рибонуклеиновые кислоты Матричный синтез Машинные масла Меди ацетаты Меди гидроксиды Меди карбонаты Меди нитрат Меди оксиды Меди сплавы Меди сульфат Меди сульфиды Меди хлориды Медицинские масла Медноаммиачные волокна Медные удобрения Медь Медьорганические соединения Меервейна реакция Межгалогенные соединения Межкристаллитная коррозия Межмолекулярные взаимодействия Межфазная поликонденсация Межфазные скачки потенциала Межфазный катализ Мезаконовая кислота Мезидин Мезитила окись Мезитилен Мезо Мезоионные соединения Мезоксалевая кислота Мезомерия Мезомерный эффект Мезонная химия Мейера - шустера перегруппировка Мейера реакция Меламин Меланины Мелем Мельхиор Мембранный катализ Мембранный потенциал Мембраны биологические Мембраны жидкие Мембраны ионообменные Мембраны разделительные Менделевий Ментадиены Ментаны Ментены Ментол Ментон Меншуткина реакция Мепробamat Меркаптаны Меркаптохинолины Меркуриметрия Мерсеризация Мета Метаболизм Метакриламид Метакриловая кислота Метакрилонитрил Металепсия Металлиды Металлизация полимеров Металлилхлорид Металлирование Металлическая связь Металлические волокна Металлические кристаллы Металлические радиусы Металлические соединения Металлов окисление Металлокомплексный катализ Металлопласты Металлополимеры Металлопротеиды Металлотермия Металлоцены Металлургия Металлы Металлы органические Метальдегид Метан Метанол Метансульфокислота Метансульфохлорид Метатезис Метафосфаты органические Метил-b-нафтилкетоh Метилакрилат Метилаль Метиламины Метилацетат Метилацетилен Метилбензолсульфонат Метилвинилкетон Метилдихлорфосфат Метилдихлорфосфин Метилдихлорфосфит Метилдихлорфосфонат Метилдофа Метиленовый голубой Метиленхлорид Метилиафталины Метилизобутилкетон Метилизотиоцианат Метилизоцианат Метилметакрилат Метилнонилацетальдегид Метиловый спирт Метилсерная кислота Метилстиролы Метилтетрафторфосфоран Метилтимоловый синий Метилфторид Метилхлорид Метилхлорсиланы Метилцеллюлоза Метилэтилбензолы Метилэтилкетон Метиновые красители Метионин Метионинметилсульфонийхлорид Механизм реакции Механические процессы Механические свойства Механохимия Меченые атомы Меченые соединения Мешалки Микотоксины Микробиологический синтез Микроволновая спектроскопия Микрография Микрокапсулирование Микрокристаллоскопия Микроудобрения Микрофильтрация Микрохимический анализ Микроэлементы Микроэмульсии Миллона реакция Минерал Минерализация Минеральные воды Минеральные удобрения Минорные нуклеозиды Миоглобин Миозин Мирцен Мирценаль Митомицины Михаэлиса-беккера реакция Михаэля реакция Михлера кетон Мицеллирный катализ Мицеллообразование Мицеллы Мицеллярные системы Мицунобу реакция Многокомпонентные системы Многофотонные процессы Мовеин Модакриловые волокна Моделирование Модификация белков Модифицирование древесины Модифицирование полимеров Молекула Молекулярная биология Молекулярная динамика Молекулярная масса Молекулярная масса полимера Молекулярная механика Молекулярность реакции Молекулярные интегралы Молекулярные комплексы Молекулярные кристаллы Молекулярные модели Молекулярные соединения Молекулярные спектры Молекулярный анализ Молибдаты Молибден Молибдена карбонилы Молибдена оксиды Молибдена сплавы Молибдена фториды Молибдена хлориды Молибденовые удобрения Моллюскоциды Молочная кислота Моляльность Молярность Монель-металл Моноаминоксидазы Моноглим Монокристаллов выращивание Монокристаллы Мономеры Мономолекулярные реакции Мономолекулярный слой Мононить Моносахариды Монофенолмонооксигеназы Монохлорукссусная кислота Моноэтаноламин Морин Морозостойкость Морская коррозия Морфин Морфинановые алкалоиды Морфолин Морфотропия Моторные масла Моторные топлива Мочевая кислота Мочевина Мочевины цикл Мощность дозы Моющее действие Мукайямы реакция Мукополисахариды Мультиплетность Мумия Муравьиная кислота Муравьиный альдегид Мурексид Мускусы Мутагены Мутаротация Мутации Мыла Мылонафт Мышьяк Мышьяка гидрид Мышьяка хлориды Мышьякорганические соединения Мюон Мюоний Мягчители Мёссбауэровская спектроскопия
www.pravda.ru: В Казани и Калининграде улучшат дорожную ситуацию на деньги ООН
09.10.2013
… основе точных данных и математического моделирования схема позволит ответить на многие вопросы: например, о месте размещения объектов строительства, паркингов, пешеходных зон, необходимости соблюдения одностороннего движения, ограничения скоростного …
www.pravda.ru: Ученые объяснили парадокс слабого Солнца
11.07.2013
… сегодняшнего дня все предыдущие попытки моделирования для решения парадокса оказывались безуспешными. Однако ученые из Колорадского университета нашли способ объяснить, как около 2,8 миллиарда лет назад на Земле могла существовать жидкая вода, которая …
www.pravda.ru: Спутники обнаружат цунами с орбиты
11.07.2013
… легкие аномалии в магнитном поле нашей планеты. Но хоть они и небольшие, чувствительная аппаратура спутников все равно может их уловить. Для того чтобы выяснить их характеристики, ученые провели моделирование самых разных сценариев с цунами, варьируя и высотой волны, и скоростью ее распространения, и пройденной ей дистанцией. Затем предсказания модели сверялись с данными о колебаниях магнитного поля …
www.pravda.ru: Китайский суперкомпьютер назван самым мощным в мире
18.06.2013
… такого плана используются для решения ряда комплексных задач: например, для моделирования погодных систем или для дизайна реактивных …
www.pravda.ru: Вооруженные силы США и Южной Кореи завершили совместные учения
30.04.2013
… американских солдат, а также более 200 тысяч военнослужащих со стороны Южной Кореи. Вместе с тем, 11-21 марта также прошли учения Key Resolve ("Ключевая решимость"), основанные на компьютерном …
www.pravda.ru: США и Южная Корея объявили о "Ключевой решимости"
11.03.2013
… десятидневных маневрах будут задействовано около 10 тысяч южнокорейских и 3500 американских военнослужащих. Учения пройдут с использованием компьютерного …
www.pravda.ru: Войска Южной Кореи и США проведут совместные учения
21.02.2013
… пройдут с привлечением авиации, военно-морских сил и сухопутных войск. Вместе с тем, на 11-12 марта запланировано проведение моделированных на компьютере учений Key …
www.pravda.ru: Физик, сидевший за шпионаж, досрочно покинул колонию
24.11.2012
… rel="nofollow" target="_blank">KM.RU. Физик занимался изготовлением стенда для моделирования воздействия космического пространства на искусственные спутники Земли по заказу китайской стороны. …
www.pravda.ru: Кофейным плантациям в Африке грозит исчезновение
09.11.2012
… компьютерное биоклиматическое моделирование, исследователи пришли к выводу, что к 2080 году аравийские деревья на континенте могут практически исчезнуть, а количество земель, пригодных для выращивания кофе, уменьшится на 65-90 процентов, …
www.yoki.ru: У Земли чуть не появился новый естественный спутник
01.10.2012
… вход в атмосферу", — говорит финский астроном и математик Эско Лиитинен. Ученый, который входит в рабочую группу по болидам в составе финской астрономической ассоциации Ursa, провел математическое моделирование этого события, пишет Корреспондент.Net. По его расчетам, небесное тело массой от тонны до десятка тонн вошло в земную атмосферу …
www.pravda.ru: Перелетные птицы посрамили физиков
03.09.2012
… многих насекомых, мигрирующих рыб и даже некоторых млекопитающих тоже работает по такому же принципу. Правда, Захари Уолтерс подчеркивает, что все это пока лишь гипотеза, основанная только на моделировании. Без всякого сомнения, она нуждается в экспериментальной проверке. …
www.pravda.ru: Что мешает звездам зажигаться
29.08.2012
… детали звездообразования и последующих событий становятся все яснее, но моделирование процессов обеспечивает возникновение гораздо большего количества звезд, чем появляется на самом деле. Впрочем, астрофизики предполагают, что есть причина такого замедления рождения светил. Ее …
www.pravda.ru: Валерий Шанцев посетит "Летнюю школу общественного моделирования "Взлет-2012"
12.07.2012
… губернатор Нижегородской области Валерий Шанцев посетит тематический молодежный палаточный лагерь "Летняя школа общественного моделирования "Взлет-2012". Глава региона ознакомится со структурой лагеря, вручит Кубок "Орла" победителю гонки на рафтах и примет участие в выездном заседании Совета ректоров вузов Нижегородской …
www.pravda.ru: Парусники скоро вытеснят теплоходы?
16.05.2012
… также заметить, что уж совсем моторов Wind Challenger лишать никто не собирается. Они, конечно же, понадобятся кораблю. В то же время компьютерное моделирование вероятного плавания парусного корабля нового типа показало, что такое судно на стандартном маршруте Иокогама — Сиэтл будет потреблять в среднем на 30 процентов меньше топлива, чем чисто …
www.pravda.ru: Юпитер нам друг или враг?
20.03.2012
… 1994 году Джордж Уэзерилл из Института Карнеги (США) произвел компьютерное моделирование, результаты которого окончательно закрепили за Юпитером статус "защитника" Земли, отводящего от нее угрозы со стороны объектов облака Оорта. …
Card image cap

Развивашки для моделирования 24 брикета по 18 гр

Пластилин для моделирования Развивашки изготавливается из безопасной для детей воскообразной массы с добавлением высококачественных красящих пигментов и наполнителей. Пластилин не имеет запаха, не прилипает к рукам и легко смешивается между собой, образуя красочную массу.

Купить 180 руб
Card image cap

Crayola Большой набор массы для моделирования Смешивай цвета 3 шт.

Любой цвет можно составить их сочетания трёх основных – красного, синего и желтого. Руководствуясь этим принципом, компания Crayola выбрала упомянутые цвета для создания своего набора массы для моделирования.

Купить 720 руб
Card image cap

Idigo Масса для моделирования 6 цветов 120 г

Масса для моделирования Idigo в коробке 6 цветов 120г - набор для детского творчества, в котором содержится разноцветная масса для лепки ярких, пастельных, флюоресцентных цветов на растительной основе.

Купить 115 руб
Card image cap

Конструктор Знаток ArTec Bloсks Зелёные защитники 10 в 1 100 деталей

Конструктор Знаток Artec Зелёные защитники 10 в 1 100 деталей предназначен для постижения азов моделирования. Особенности: 100 пластиковых деталей, которые могут стать частью могучих машин, стоит только отдать их в руке начинающему маленькому конструктору.

Купить 1220 руб
Card image cap

Конструктор Знаток ArTec Bloсks Небесные гонщики 10 в 1 100 деталей

Конструктор Знаток Artec Небесные гонщики 10 в 1 100 деталей предназначен для постижения азов моделирования. Особенности: 100 пластиковых деталей, которые могут стать частью могучих машин, стоит только отдать их в руке начинающему маленькому конструктору.

Купить 1220 руб
Card image cap

Wader Паркинг Гараж №1 Премиум с автомобилями

Wader Паркинг Гараж №1 Премиум с автомобилями, может стать прекрасным подарком для любого ребенка. Особенности: Развивает у детей логику, моторику и интерес к моделированию различных ситуаций, а также станет местом где дети и родители играют вместе.

Купить 2940 руб
Card image cap

Play Smart Набор мебели Уютный дом Кухня

Игровой набор Play Smart Р41068"Уютный дом Кухня" - это игровой набор для девочек, подходящий для сюжетно-ролевых игр с куклами до 29 см. В состав кухонного модуля входят плита с конфорками и духовкой, вытяжка, раковина с краном, шкафчики, микроволновая печь и холодильник.

Купить 1610 руб
Card image cap

ToysUnion Мозаика Классика 135 эл. d. 15 большая плата

Мозаика TOYSUNION 00-331 Классика 135 эл. d. 15 большая плата. Мозаика- это увлекательная развивающая игра для детей от трех лет и старше. Она разовьет у ребенка творческие способности, воображение, координацию движений, мелкую моторику рук и ориентировку на плоскости.

Купить 445 руб
Card image cap

Kuso Черепашки-ниндзя, 6 цветов

Пластилин Kuso Черепашки - ниндзя - специальная серия для мальчиков с использованием лицензии знаменитых на весь мир Черепашек – Ниндзя. Четыре героя «Леонардо», «Микеланджело» , «Донателло», «Рафаэль», в большом городе учатся преодолевать подростковые проблемы и рассчитывать на собственные силы.

Купить 20 руб