Словарь научных терминов
Микроэмульсии

МИКРОЭМУЛЬСИИ, многокомпонентные жидкие коллоидные системы (микрогетерог. жидкости), характеризующиеся термодинамич. устойчивостью. Обычно прозрачны или слабо опалесцируют. Образуются самопроизвольно при смешении двух жидкостей с ограниченной взаимной р-ри-мостью (в простейшем случае при смешении воды и углеводорода) в присут. мицеллообразующих ПАВ. Как правило, система содержит также электролит и немицеллообразую-щее ПАВ (спирт, амин, эфир или др.), наз. ко-ПАВ (или со-ПАВ). Размер частиц дисперсной фазы (микрокапсль) составляет 10-100 нм.

При изменении числа компонентов, состава или т-ры в системе происходят макроскопич. фазовые превращ., к-рые подчиняются фаз правилу и анализируются с помощью диаграмм состояния. Обычно строят "псевдотройные" диаграммы, рассматривая в качестве одного компонента углеводород (масло), в качестве другого-воду и электролит, в качестве третьего-ПАВ и ко-ПАВ. В плоскости треугольника составов (см. Многокомпонентные системы)кривая отделяет область 1 существования однородной (в макроскопич. смысле) М. от областей, где М. расслаивается (см. рис.). Однородная М. в зависимости от состава или природы компонентов может представлять собой либо равномерную смесь (ко-солюбилизат) всех компонентов, либо лиотроп-ную жидкокристаллич. фазу (мезофазу). Непосредственно вблизи кривой сосуществуют набухшие мицеллярные системы типов ПАВ-вода с солюбилизир. углеводородом (область Г) и ПАВ - углеводород с солюбилизир. водой (область 1:). Расслаивающаяся М. представляет собой набухшую мицеллярную систему углеводород-вода, к-рая в зависимости от условий (состав, т-ра, природа компонентов и др.) равновесно сосуществует либо с избытком почти чистого углеводорода (MI), либо с избытком воды (МII, либо с избытком обоих чистых компонентов (MIII).

http://www.medpulse.ru/image/encyclopedia/5/6/3/8563.jpeg

Концентрационные треугольники для системы вода (В) - углеводород (У)-ПАВ (а) и фазовые переходы между типами микроэмульсий (б). 1-однородная (в макроскопич. смысле) микроэмульсия, 1' и 1:-мицеллярные системы на основе ПАВ, MI, MII, MIII-расслаивающиеся микроэмульсии с избытком углеводорода, воды и обеих сред соответственно.


MI и МII, а также набухшие мицеллярные системы на основе ПАВ (области 1' и 1:) хорошо описываются моделью сферич. монодисперсных невзаимодействующих микрокапель, равномерно распределенных в дисперсионной среде, а именно: MI и система типа 1'-дисперсии микрокапель углеводорода в водной среде, МII и система типа 1:-дисперсия микрокапель воды в углеводородной среде. Микрокапли в этих дисперсиях стабилизированы монослоями ПАВ и ко-ПАВ. MIII не описываются сферич. моделью. Для них предложено неск. моделей, из к-рых наиб. распространение получила модель губчатой структуры с хаотич. распределением микрообластей воды и масла, разделенных тончайшими пленками (бислоями) ПАВ.

Фазовые переходы MIhttp://www.medpulse.ru/image/encyclopedia/5/6/4/8564.jpegMIIIhttp://www.medpulse.ru/image/encyclopedia/5/6/5/8565.jpeg МII при постоянных т-ре и кол-вах воды и углеводорода вызываются изменением концентраций электролита, ПАВ или ко-ПАВ. На рис. схематически показан постепенный переход от MI (микрокапли углеводорода в воде) к MIII и МII (микрокапли воды в углеводороде). Наиб. подробно исследовано изменение содержания в системе электролита, к-рый влияет на межчастичное взаимод., а также изменяет коэффициент распределения ПАВ между водной и углеводородной средами.

Помимо содержания электролита, фазовому переходу способствуют: увеличение длины алкильной цепи ПАВ, степень ароматичности масла, введение в качестве ко-ПАВ высших маслорастворимых спиртов, повышение т-ры (в случае не-ионогенных ПАВ). Фазовый переход наблюдается также при уменьшении длины цепи (числа атомов С) в углеводороде, уменьшении числа оксиэтиленовых групп в ПАВ, введении в качестве ко-ПАВ короткоцепочечных водорастворимых спиртов и снижение т-ры (для большинства ионогенных ПАВ).

Информацию о структуре М., состоянии межфазных пленок, межчастичных взаимод. и др. получают по данным светорассеяния, фотон-корреляц. спектроскопии, малоуглового рассеяния рентгеновских лучей и нейтронов, ЭПР, ЯМР и др.

М.-лиофильные системы (см. Лиофильность и лиофоб-ность). Образование микрокапель размером 5-10 нм соответствует очень низким значениям межфазного натяжения s12 на границе между равновесно сосуществующими жидкими фазами-до 10-2 -10-3 Н/м. При переходах MIhttp://www.medpulse.ru/image/encyclopedia/5/6/6/8566.jpegMIII или МIIhttp://www.medpulse.ru/image/encyclopedia/5/6/7/8567.jpeg MIII значение s12 достигает 10-4-10-6 Н/м.

Для многих М. найдены критич. точки, в к-рых исчезает граница между сосуществующими фазами. О приближении к критич. точке свидетельствует резкое повышение электрич. проводимости М. (на 4-5 порядков), увеличение размера капель и их бесконечное агрегирование (перколяция). В рамках флуктуац. теории критических явлений радиус корреляции флуктуации концентрации (состава системы) связан степенной зависимостью с т-рой, кол-вом солюбилизиро-ванного в микрокапле компонента, концентрацией электролита и др.

Применение М. обусловлено их способностью поглощать большие объемы воды или углеводородной жидкости, а также солюбилизировать в микрокаплях примеси и загрязнения. Перспективно использование М. для повышения неф-теотдачи (коэф. извлечения нефти из пластов), поскольку системы типа MI (в избытке нефть) или МII (в избытке вода) характеризуются очень низкими значениями межфазного натяжения. Это позволит снизить расход ПАВ по сравнению с чисто водными дисперсиями ПАВ, закачиваемыми в пласт; кроме того, увеличивается подвижность нефти, облегчается ее отрыв от твердой породы, ускоряется слияние макрокапель нефти (коалесценция). М. обладают эффективным моющим и дезинфицирующим действием, являются удобной формой для диспергирования лек. ср-в, р-рителей и др., служат средой для проведения хим. р-ций (см. Мицеллярный катализ). М. являются комплексы вода-липид-белок, к-рые участвуют в метаболизме жиров, липо-протеинов и т. п. М. с перфторир. углеводородами-перспективные кровезаменители.

Лит.: Мицеллообразование, солюбилизация и микроэмульсии, под ред. К. Миттeла, пер. с англ., М., 1980. Г. П. Ямпольская.


-метилацетофенон -метоксиацетофенон 2-меркаптобензотиазол 2-меркаптоэтиламин 2-метил-5-винилпиридин N-метилпирролидон Магнезоны Магнетохимия Магниевые удобрения Магний Магнийорганические соединения Магнитная восприимчивость Магнитная постоянная Магнитно-спиновые эффекты Магнитные материалы Магнитный момент Магния галогениды Магния гидроксид Магния карбонат Магния нитрат Магния оксид Магния перхлорат Магния сплавы Магния сульфат Мазут Майзенхаймера перегруппировка Мак-лафферти перегруппировка Мак-фадьена-стивенса реакция Макарова фазы Маковое масло Макро- и микрокомпоненты Макрокинетика Макролиды Макромолекула Макромономеры Макропористые ионообменные смолы Макрорадикалы Максимальная работа реакции Малапрада реакция Малахитовый зеленый Малеиновая и фумаровая кислоты Малеиновый ангидрид Малоновая кислота Малоновый эфир Малононитрил Мальтены Мальтоза Мальтол Манганаты Манганин Маннаны Маннит Манниха реакция Манноза Маноилоксиды Манометры Маноол Марганец Марганецорганические соединения Марганца карбонат Марганца карбонилы Марганца нитрат Марганца оксиды Марганца сульфат Марганцевые удобрения Маскирование Маслонаполненные каучуки Маслостойкость Масляная кислота Масляные краски Масляные лаки Масляный альдегид Масс-спектрометрия Массовое число Массообмен Мастики Мастикс Масштабный переход Маточные средства Матрица плотности Матричные рибонуклеиновые кислоты Матричный синтез Машинные масла Меди ацетаты Меди гидроксиды Меди карбонаты Меди нитрат Меди оксиды Меди сплавы Меди сульфат Меди сульфиды Меди хлориды Медицинские масла Медноаммиачные волокна Медные удобрения Медь Медьорганические соединения Меервейна реакция Межгалогенные соединения Межкристаллитная коррозия Межмолекулярные взаимодействия Межфазная поликонденсация Межфазные скачки потенциала Межфазный катализ Мезаконовая кислота Мезидин Мезитила окись Мезитилен Мезо Мезоионные соединения Мезоксалевая кислота Мезомерия Мезомерный эффект Мезонная химия Мейера - шустера перегруппировка Мейера реакция Меламин Меланины Мелем Мельхиор Мембранный катализ Мембранный потенциал Мембраны биологические Мембраны жидкие Мембраны ионообменные Мембраны разделительные Менделевий Ментадиены Ментаны Ментены Ментол Ментон Меншуткина реакция Мепробamat Меркаптаны Меркаптохинолины Меркуриметрия Мерсеризация Мета Метаболизм Метакриламид Метакриловая кислота Метакрилонитрил Металепсия Металлиды Металлизация полимеров Металлилхлорид Металлирование Металлическая связь Металлические волокна Металлические кристаллы Металлические радиусы Металлические соединения Металлов окисление Металлокомплексный катализ Металлопласты Металлополимеры Металлопротеиды Металлотермия Металлоцены Металлургия Металлы Металлы органические Метальдегид Метан Метанол Метансульфокислота Метансульфохлорид Метатезис Метафосфаты органические Метил-b-нафтилкетоh Метилакрилат Метилаль Метиламины Метилацетат Метилацетилен Метилбензолсульфонат Метилвинилкетон Метилдихлорфосфат Метилдихлорфосфин Метилдихлорфосфит Метилдихлорфосфонат Метилдофа Метиленовый голубой Метиленхлорид Метилиафталины Метилизобутилкетон Метилизотиоцианат Метилизоцианат Метилметакрилат Метилнонилацетальдегид Метиловый спирт Метилсерная кислота Метилстиролы Метилтетрафторфосфоран Метилтимоловый синий Метилфторид Метилхлорид Метилхлорсиланы Метилцеллюлоза Метилэтилбензолы Метилэтилкетон Метиновые красители Метионин Метионинметилсульфонийхлорид Механизм реакции Механические процессы Механические свойства Механохимия Меченые атомы Меченые соединения Мешалки Микотоксины Микробиологический синтез Микроволновая спектроскопия Микрография Микрокапсулирование Микрокристаллоскопия Микроудобрения Микрофильтрация Микрохимический анализ Микроэлементы Микроэмульсии Миллона реакция Минерал Минерализация Минеральные воды Минеральные удобрения Минорные нуклеозиды Миоглобин Миозин Мирцен Мирценаль Митомицины Михаэлиса-беккера реакция Михаэля реакция Михлера кетон Мицеллирный катализ Мицеллообразование Мицеллы Мицеллярные системы Мицунобу реакция Многокомпонентные системы Многофотонные процессы Мовеин Модакриловые волокна Моделирование Модификация белков Модифицирование древесины Модифицирование полимеров Молекула Молекулярная биология Молекулярная динамика Молекулярная масса Молекулярная масса полимера Молекулярная механика Молекулярность реакции Молекулярные интегралы Молекулярные комплексы Молекулярные кристаллы Молекулярные модели Молекулярные соединения Молекулярные спектры Молекулярный анализ Молибдаты Молибден Молибдена карбонилы Молибдена оксиды Молибдена сплавы Молибдена фториды Молибдена хлориды Молибденовые удобрения Моллюскоциды Молочная кислота Моляльность Молярность Монель-металл Моноаминоксидазы Моноглим Монокристаллов выращивание Монокристаллы Мономеры Мономолекулярные реакции Мономолекулярный слой Мононить Моносахариды Монофенолмонооксигеназы Монохлорукссусная кислота Моноэтаноламин Морин Морозостойкость Морская коррозия Морфин Морфинановые алкалоиды Морфолин Морфотропия Моторные масла Моторные топлива Мочевая кислота Мочевина Мочевины цикл Мощность дозы Моющее действие Мукайямы реакция Мукополисахариды Мультиплетность Мумия Муравьиная кислота Муравьиный альдегид Мурексид Мускусы Мутагены Мутаротация Мутации Мыла Мылонафт Мышьяк Мышьяка гидрид Мышьяка хлориды Мышьякорганические соединения Мюон Мюоний Мягчители Мёссбауэровская спектроскопия