Словарь научных терминов
Механохимия

МЕХАНОХИМИЯ, изучает хим. и физ.-хим. превращения в-ва при мех. воздействиях. Превращ., обусловленные трением, иногда выделяют в самостоят. раздел М., наз. три-бохимией; разделами М. считаются также химия ультразвука, химия ударных волн и др. Механохим. превращ. обусловлены переходом в-ва в метастабильное химически активное состояние, а также интенсификацией массопере-носа в результате поглощения мех. энергии. Одна из причин хим. активации жидкостей заключается в возникновении кавитации, напр. при поглощении ультразвука. При за-хлопывании кавитац. полостей происходит передача энергии устремляющимся внутрь жидкости молекулам парогазовой смеси и их диссоциация. Активность твердых тел при деформировании, трении или разрушении вызвана возникновением колебательно- и электронно-возбужденных состояний межатомных связей, механически напряженных и разорванных связей, в т. ч. своб. радикалов, ион-радикалов, координационно ненасыщ. атомов, разл. структурных дефектов, а также ионизацией частиц в-ва и стабилизацией электрически заряженных центров.

Механохим. процессы характеризуются энергетич. выходом G (моль/МДж), равным числу молей активных частиц или продуктов хим. превращения, возникших в результате поглощения в-вом 1 МДж мех. энергии. Как правило, активные частицы короткоживущие и величина выхода G определяется соотношением скоростей процессов их гибели и хим. превращения, В стационарных процессах

http://www.medpulse.ru/image/encyclopedia/5/5/4/8554.jpeg

где Gобр-выход образования активных частиц, tрел и tхим - характерные времена их гибели (релаксации) и хим. реакции. Величины tрел и tхим зависят от т-ры, концентрации компонента и параметров напряженного состояния (величины напряжения, скорости нагружения).

Для передачи в-ву мех. энергии пластичные материалы обрабатывают на вальцах, в экструдерах и т. п., порошки-в мельницах, дезинтеграторах или аналогичных машинах; для интенсификации подвода энергии тела деформируют при давлениях до 1-10 МПа, а также в ударных волнах. Кроме того, источниками мех. энергии м. б. хим., физ.-хим. и физ. процессы, сопровождающиеся изменением объема, напр. хим. р-ция, фазовый переход, быстрое нагревание. Поглощение мех. энергии инициирует разложение в-в (в т.ч. деструкцию полимеров), полиморфные превращ., гетерог. р-ции твердых тел с газами и жидкостями, твердофазный синтез в смесях порошков и др. р-ции. С поглощением мех. энергии связан также хим. износ пов-стей трения и рабочего инструмента в процессах мех. обработки, разрушение конструкц. материалов, работающих при статич. или динамич. нагрузках в активных средах, напр. коррозия напряженного металла (см. Коррозия под напряжением).

Мех. активация твердых тел заключается в создании долгоживущих нарушений атомной структуры с целью изменения структурно-чувствит. св-в в-ва, прежде всего реакц. способности. Чаще всего активируют порошковые материалы; мех. обработка порошков сопровождается накоплением точечных дефектов, дислокаций, аморфных областей, увеличением площади межзеренных границ, образованием новых пов-стей (см. Дефекты). Энергетич. выходы образования структурных дефектов, как правило, не превышают 10-3-10-1 моль/МДж. В результате мех. нарушения атомной структуры повышаются р-римость в-ва и скорость растворения, облегчаются р-ции с молекулами среды и др. твердыми телами, на десятки и сотни градусов снижаются т-ры твердофазного синтеза, термич. разложения, спекания. Механически активируют наполнители (графит и др.), фосфатные удобрения, прир. и синтетич. полимеры и др. материалы. Мех. активация увлажненного диоксида кремния и нек-рых др. оксидов придает им вяжущие св-ва и является основой безобжиговой технологии жаропрочных материалов.

Механохим. разложение м. б. полным или частичным. Пример полного разложения - инициирование ударом распада нек-рых ВВ (напр., азидов). Сравнительно легко разлагаются, выделяя воду, кристаллогидраты, напр. медный купорос и каолин; более трудно и лишь частично - нитраты, карбонаты и др. соли. При мех. деструкции полимеров связи осн. цепи разрываются по гомолитич. механизму. Энерге-тич. выход разрывов с образованием своб. радикалов увеличивается с ростом жесткости полимера от 10 -3 моль/МДж (полиэтилен) до 10-1 (сшитые полиэфиракрилаты). В результате снижается мол. масса, а вторичные радикальные р-ции приводят к разветвлениям и сшивкам макромолекул. В присут. кислорода своб. радикалы инициируют цепное окисление, к-рое иногда вызывает глубокие изменения структуры и св-в полимера (напр., пластикация каучуков).

Гетерог. механохим. р-ции твердое тело-газ и твердое тело - жидкость протекают на пов-стях, образующихся при разрушении или участвующих в трении. Осн. вклад в хим. активность пов-сти вносят координационно ненасыщ. атомы. На пов-сти трения железа их концентрация составляет 1018 м-2. Высокая хим. активность пов-сти трения оксидов щел.-зем. металлов обусловлена стабилизацией ион-радикальных центров М+...О-; энергетич. выход их образования 0,5 моль/МДж, а поверхностная концентрация 1017 м-2. На пов-сти диоксидов кремния и германия во время мех. обработки порошков рвутся связи Si—О или Ge—О и возникают своб. радикалы, напр. =Si и =SiO; часть их быстро гибнет и на пов-сти стабилизируется до 1017 м-2 радикальных и мол. активных центров. Взаимод. газов с короткоживущими и стабильными активными центрами, возникшими на пов-сти твердых тел вследствие мех. воздействия, наз. мех. хемосорбцией. Мех. хемосорбция, а также полимеризация мономеров на активных центрах приводят к модификации пов-сти и улучшению адгезии при использовании порошков в качестве наполнителей. Гетерог. механохим. р-ции, начавшись на пов-сти, могут развиваться в глубину материала. Именно таким образом происходит растворение кремния в воде при мех. обработке суспензий: кремний раств. нацело с образованием Н2 и H4SiO4.

Механохим. полиморфные превращ. захватывают весь объем в-ва; их наблюдают практически при всех видах мех. обработки. Переход массикот-глет в оксиде свинца является примером такого превращ. с большим энергетич. выходом (до 50 моль/МДж). Переходы графит-алмаз и графитоподобный нитрид бора-боразон осуществляются в мощных ударных волнах при давлениях в неск. ГПа (см. Давление).

Твердофазный механохим. синтез в смесях порошков возможен благодаря интенсификации массопереноса и перемешиванию реагирующих в-в на мол. или кластерном уровне. Он м. б. осуществлен при низкой т-ре, в т. ч. комнатной, и перспективен для смесей компонентов с высокими т-рами плавления или разлагающихся при нагревании. Энергетич. выход синтеза тем больше, чем выше тепловой эффект р-ции, и может достигать неск. моль/МДж; высокий выход делает твердофазный механохим. синтез эффективным процессом химии твердого тела. Механохим. синтез интерме-таллидов обычно наз. мех. сплавлением; его преимущества по сравнению с термич. синтезом - возможность получения порошков аморфных сплавов (напр., никеля с титаном), активных катализаторов (напр., алюминида никеля) и др. Механохим. методом синтезированы сложные оксиды со структурой шпинелей (напр., ферриты) и перовскита из двух-трех смесей порошков; в сложных смесях энергетич. выход составляет 10-2-10-1 моль/МДж. В смесях орг. в-в осуществлен диеновый синтез, твердофазная полимеризация и др. процессы.

Механохим. исследования дают вклад в фундам. научное знание и решают мн. практич. проблемы синтеза и модифицирования в-в, совершенствования технологии произ-ва и мех. обработки материалов. Механохим. методы применяют в многотоннажных произ-вах (пластикация каучуков, синтез строит. и жаропрочных материалов, приготовление р-ров для бурения и др.) и в узкоспециальных областях (напр., ультразвуковое приготовление вакцин). Др. важное направление механохим. исследований-предотвращение не-желат. последствий механохим. р-ций, вызывающих преждевременный выход из строя механизмов, узлов или отдельных деталей, работающих в условиях интенсивных мех. нагрузок. Достижения М. важны для развития химии твердого тела, кинетики твердофазных р-ций, физики прочности и долговечности, теории старения полимеров, физико-химической механики, ряда проблем геохимии, биохимии, биофизики.

Лит.: Болдырев В. В., Экспериментальные методы в механохимии твердых неорганических веществ, Новосиб., 1983; Бутягин П. Ю., "Успехи химии", 1984, т. 53, в. 11, с. 1769-89, Аввакумов Е. Г., Механические методы активации химических процессов, 2 изд., Новосиб., 1986; Хайнике Г., Трибохимия, пер. с англ., М., 1987; Кулебакин В. Г., Применение механохимии в гидрометал-лургнческих процессах, Новосиб., 1988. П. Ю. Бутягин.


-метилацетофенон -метоксиацетофенон 2-меркаптобензотиазол 2-меркаптоэтиламин 2-метил-5-винилпиридин N-метилпирролидон Магнезоны Магнетохимия Магниевые удобрения Магний Магнийорганические соединения Магнитная восприимчивость Магнитная постоянная Магнитно-спиновые эффекты Магнитные материалы Магнитный момент Магния галогениды Магния гидроксид Магния карбонат Магния нитрат Магния оксид Магния перхлорат Магния сплавы Магния сульфат Мазут Майзенхаймера перегруппировка Мак-лафферти перегруппировка Мак-фадьена-стивенса реакция Макарова фазы Маковое масло Макро- и микрокомпоненты Макрокинетика Макролиды Макромолекула Макромономеры Макропористые ионообменные смолы Макрорадикалы Максимальная работа реакции Малапрада реакция Малахитовый зеленый Малеиновая и фумаровая кислоты Малеиновый ангидрид Малоновая кислота Малоновый эфир Малононитрил Мальтены Мальтоза Мальтол Манганаты Манганин Маннаны Маннит Манниха реакция Манноза Маноилоксиды Манометры Маноол Марганец Марганецорганические соединения Марганца карбонат Марганца карбонилы Марганца нитрат Марганца оксиды Марганца сульфат Марганцевые удобрения Маскирование Маслонаполненные каучуки Маслостойкость Масляная кислота Масляные краски Масляные лаки Масляный альдегид Масс-спектрометрия Массовое число Массообмен Мастики Мастикс Масштабный переход Маточные средства Матрица плотности Матричные рибонуклеиновые кислоты Матричный синтез Машинные масла Меди ацетаты Меди гидроксиды Меди карбонаты Меди нитрат Меди оксиды Меди сплавы Меди сульфат Меди сульфиды Меди хлориды Медицинские масла Медноаммиачные волокна Медные удобрения Медь Медьорганические соединения Меервейна реакция Межгалогенные соединения Межкристаллитная коррозия Межмолекулярные взаимодействия Межфазная поликонденсация Межфазные скачки потенциала Межфазный катализ Мезаконовая кислота Мезидин Мезитила окись Мезитилен Мезо Мезоионные соединения Мезоксалевая кислота Мезомерия Мезомерный эффект Мезонная химия Мейера - шустера перегруппировка Мейера реакция Меламин Меланины Мелем Мельхиор Мембранный катализ Мембранный потенциал Мембраны биологические Мембраны жидкие Мембраны ионообменные Мембраны разделительные Менделевий Ментадиены Ментаны Ментены Ментол Ментон Меншуткина реакция Мепробamat Меркаптаны Меркаптохинолины Меркуриметрия Мерсеризация Мета Метаболизм Метакриламид Метакриловая кислота Метакрилонитрил Металепсия Металлиды Металлизация полимеров Металлилхлорид Металлирование Металлическая связь Металлические волокна Металлические кристаллы Металлические радиусы Металлические соединения Металлов окисление Металлокомплексный катализ Металлопласты Металлополимеры Металлопротеиды Металлотермия Металлоцены Металлургия Металлы Металлы органические Метальдегид Метан Метанол Метансульфокислота Метансульфохлорид Метатезис Метафосфаты органические Метил-b-нафтилкетоh Метилакрилат Метилаль Метиламины Метилацетат Метилацетилен Метилбензолсульфонат Метилвинилкетон Метилдихлорфосфат Метилдихлорфосфин Метилдихлорфосфит Метилдихлорфосфонат Метилдофа Метиленовый голубой Метиленхлорид Метилиафталины Метилизобутилкетон Метилизотиоцианат Метилизоцианат Метилметакрилат Метилнонилацетальдегид Метиловый спирт Метилсерная кислота Метилстиролы Метилтетрафторфосфоран Метилтимоловый синий Метилфторид Метилхлорид Метилхлорсиланы Метилцеллюлоза Метилэтилбензолы Метилэтилкетон Метиновые красители Метионин Метионинметилсульфонийхлорид Механизм реакции Механические процессы Механические свойства Механохимия Меченые атомы Меченые соединения Мешалки Микотоксины Микробиологический синтез Микроволновая спектроскопия Микрография Микрокапсулирование Микрокристаллоскопия Микроудобрения Микрофильтрация Микрохимический анализ Микроэлементы Микроэмульсии Миллона реакция Минерал Минерализация Минеральные воды Минеральные удобрения Минорные нуклеозиды Миоглобин Миозин Мирцен Мирценаль Митомицины Михаэлиса-беккера реакция Михаэля реакция Михлера кетон Мицеллирный катализ Мицеллообразование Мицеллы Мицеллярные системы Мицунобу реакция Многокомпонентные системы Многофотонные процессы Мовеин Модакриловые волокна Моделирование Модификация белков Модифицирование древесины Модифицирование полимеров Молекула Молекулярная биология Молекулярная динамика Молекулярная масса Молекулярная масса полимера Молекулярная механика Молекулярность реакции Молекулярные интегралы Молекулярные комплексы Молекулярные кристаллы Молекулярные модели Молекулярные соединения Молекулярные спектры Молекулярный анализ Молибдаты Молибден Молибдена карбонилы Молибдена оксиды Молибдена сплавы Молибдена фториды Молибдена хлориды Молибденовые удобрения Моллюскоциды Молочная кислота Моляльность Молярность Монель-металл Моноаминоксидазы Моноглим Монокристаллов выращивание Монокристаллы Мономеры Мономолекулярные реакции Мономолекулярный слой Мононить Моносахариды Монофенолмонооксигеназы Монохлорукссусная кислота Моноэтаноламин Морин Морозостойкость Морская коррозия Морфин Морфинановые алкалоиды Морфолин Морфотропия Моторные масла Моторные топлива Мочевая кислота Мочевина Мочевины цикл Мощность дозы Моющее действие Мукайямы реакция Мукополисахариды Мультиплетность Мумия Муравьиная кислота Муравьиный альдегид Мурексид Мускусы Мутагены Мутаротация Мутации Мыла Мылонафт Мышьяк Мышьяка гидрид Мышьяка хлориды Мышьякорганические соединения Мюон Мюоний Мягчители Мёссбауэровская спектроскопия