Словарь научных терминов
Межфазные скачки потенциала

МЕЖФАЗНЫЕ СКАЧКИ ПОТЕНЦИАЛА, разности элект-рич. потенциалов на границе раздела фаз электрод - электролит, обусловленные пространств. разделением зарядов и определяемые работой переноса через эту границу единичного воображаемого заряда. При переносе из бесконечно удаленной точки С, расположенной в вакууме, в точку А, находящуюся внутри нек-рой фазы а (напр., металла или р-ра электролита), М.с. п. наз. внутренним потенциалом фазы а и обозначается ja (рис. 1). Он обусловлен своб. электростатич. зарядом самой фазы а, к-рый создает скачок потенциала Ya, наз. внешним потенциалом фазы, и пространств. разделением связанных зарядов на границе вакуума и фазы а, в результате к-рого возникает п о в е р х н о с т н ы й п о т е н ц и а л Хa. Следовательно, ja = Ya + Хa.

Потенциал Ya определяется работой переноса единичного воображаемого заряда из бесконечно удаленной точки С в вакууме в точку А', к-рая находится также в вакууме, но вблизи фазы а. Так, если фаза a-сфера радиуса R и несет своб. заряд Q, по законам электростатики Ya = Q/4pe0R, где e0 = 8,854.10-12 Ф/м-электрич. постоянная (диэлектрич. проницаемость вакуума). Точка А' выбирается на таком малом расстоянии х от пов-сти фазы a, чтобы Q/4pe0 (R + х)http://www.medpulse.ru/image/encyclopedia/3/1/2/8312.jpeg Q/4pe0R, т. е. х << R. С др. стороны, х должно быть достаточно велико для того, чтобы можно было пренебречь взаимод. единичного заряда с индуцированным им зарядом внутри фазы а по сравнению с кулоновским взаимод. единичного заряда со своб. зарядом Q. Это условие выполняется при значениях х от 10-7 до 10-5 м (обычно полагают xhttp://www.medpulse.ru/image/encyclopedia/3/1/3/8313.jpeg 10-6м).

http://www.medpulse.ru/image/encyclopedia/3/1/4/8314.jpeg

Рис. 1. Межфазные скачки потенциала при контакте фаз a и b.


Потенциал Хa определяется работой переноса единичного воображаемого заряда из точки А' в точку А внутри фазы a. Если a-металл, Хa возникает потому, что электронный газ выходит за пределы кристаллич. решетки металла и таким образом создается пространств. разделение зарядов; при этом Хa > 0. Если же a- р-р электролита, механизм возникновения Хa полагают следующим. Поскольку силы, действующие на первый слой молекул р-рителя со стороны вакуума (или воздуха) и со стороны р-ра, существенно различны, распределение частиц р-рителя вблизи пов-сти р-ра отличается от их хаотич. распределения в объеме р-ра. На пов-сти всегда возникает нек-рая предпочтит. ориентация молекул р-рителя и, если они полярны, т.е. обладают дипольным моментом, их ориентация может привести к пространств. разделению зарядов и возникновению разности потенциалов. С др. стороны, этот же эффект м. б. следствием неодинаковой сольватации анионов и катионов в р-ре и разл. расстоянием их центров заряда до границы раздела фаз в поверхностном слое р-ра.

Если фазы а и р контактируют, а точки В и В' находятся соотв. внутри фазы b и в вакууме на расстоянии хhttp://www.medpulse.ru/image/encyclopedia/3/1/5/8315.jpeg 10 -6 м от ее пов-сти (рис. 1), то кроме описанных потенциалов фазы b (jb, Yb и Хb) возникает также разность потенциалов между точками А и В, наз. гальвани-потенциалом (обозначается Dabj), и точками А' и В', наз. вольта-потенциалом (DabY). Гальвани-потенциал определяется работой переноса единичного воображаемого заряда из точки А в точку В, вольта-потенциал-из А' в В'. Поскольку работа переноса заряда не зависит от пути переноса, галь-вани- и вольта-потенциалы можно записать как разность соответствующих внутренних или внешних потенциалов: Dabj = jb - ja; DabY = Yb - Ya. Кроме того, как видно из рис. 1, DabY = Хa + Dabj - Хb.

Поскольку в любом эксперименте по переносу зарядов через границу раздела фаз участвуют не единичные воображаемые заряды, а реальные заряженные частицы (электроны, ионы), всегда измеряется работа переноса этих частиц, определяемая разностью их электрохим. потенциалов в обеих фазах. По определению, электрохимический потенциал частицы i в фазе a mia = mia + ziFja, где mia-хим. потенциал этой частицы в фазе a, z,-ee зарядовое число, F- постоянная Фарадея. Работа переноса 1 моля частиц i из a в b равна: mib — mia = (mib — mia) + ziF (jb — ja). Опытным путем разделить эту величину на две составляющие - химическую (mib — mia)и электрическую ziF (jb — ja) - невозможно. Отсюда следует, что электрич. разность потенциалов между двумя точками м. б. измерена лишь при условии, что эти точки расположены в одинаковых по составу фазах, когда mibmia = 0. Поэтому внутренние и поверхностные потенциалы, а также гальвани-потенциалы на границе двух фаз различного состава не м. б. измерены; внешние потенциалы и вольта-потенциалы доступны экспериментальному определению.

В обычных электрохим. экспериментах с помощью вольтметра или потенциометра всегда определяют разность потенциалов на концах правильно разомкнутой цепи, т. е. такой цепи, к-рая заканчивается проводниками из одного и того же металла. Обычно это достигается простым подключением к электродам Ml и М2 медных проводов (рис. 2, а). Такая цепь имеет четыре гальвани-потенциала: DM1Cuj, Dp-pM1j, DM2p-pj и DCuM2j. Можно, однако, показать, что эта цепь эквивалентна цепи, изображенной на рис. 2, в и содержащей только три гальвани-потенциала: DM1M2j, Dp-pM1j и DM2p-pj. Действительно, включение между медным проводом и металлом Ml проводника из металла М2 (рис. 2,6)не изменяет разности потенциалов на концах цепи. Поэтому цепи на рис. 2, а и 2,б эквивалентны. Но цепь на рис. 2,б одновременно эквивалентна и цепи на рис. 2, в, т. к. отличается от нее двумя гальвани-потенциалами DM2Cuj, к-рые в точности компенсируют друг друга. Следовательно, эквивалентны и цепи, изображенные на рис. 2, а и 2, в.

http://www.medpulse.ru/image/encyclopedia/3/1/6/8316.jpeg

Рис. 2. Эквивалентные правильно разомкнутые электрохим. цепи.


Хотя абс. значения Хa и Dbaj нельзя измерить, можно определить на опыте их изменения. Так, если в системе (рис. 2,а)электрич. состояние металла Ml оставить без изменения, а М2 изменить поляризацией от внеш. источника путем погружения в р-р третьего вспомогат. электрода, то изменение разности потенциалов между двумя первыми электродами будет равно изменению гальвани-потенциала DM2p-pj.

Поверхностные потенциалы следует отличать от доступной измерению работы выхода Wai частицы i, т.е. работы переноса ее из фазы а в точку А', расположенную в вакууме на расстоянии х от границы раздела фаз. Для 1 моля частиц Wai = — maiziFXa. Если объемный состав фазы а не изменяется и, следовательно, mai = const, а поверхностный потенциал этой фазы изменяется, напр., вследствие адсорбции к.-л. в-ва, то изменение Хa однозначно связано с изменением Wai ф-лой dХa = — dWai/ziF. Эта ф-ла лежит в основе эксперим. определения dХa.

Для оценки абс. значения Xa пользуются модельными расчетами. При этом задаются моделью границы фазы а с вакуумом и по распределению заряженных частиц на этой границе рассчитывают Хa (или задаются моделью объема фазы а, рассчитывают на ее основе mai) и с помощью найденного экспериментально значения Wai рассчитывают Хa по ф-ле Хa = - (mai+ Wai)/ziF. Если оба из указанных способов дают согласующиеся значения, оценку можно считать достаточно надежной.

Для модельного расчета гальвани-потенциала используют ф-лу: Dbaj = DbaY + Хb — Хa, в к-рую подставляют найденный экспериментально вольта-потенциал и значения Хb и Хa, полученные на основе модельных расчетов.

Лит.: Дамаскин Б. Б., Петрий О. А., Введение в электрохимическую кинетику, 2 изд., М., 1983. Б. Б. Дамаскин.


-метилацетофенон -метоксиацетофенон 2-меркаптобензотиазол 2-меркаптоэтиламин 2-метил-5-винилпиридин N-метилпирролидон Магнезоны Магнетохимия Магниевые удобрения Магний Магнийорганические соединения Магнитная восприимчивость Магнитная постоянная Магнитно-спиновые эффекты Магнитные материалы Магнитный момент Магния галогениды Магния гидроксид Магния карбонат Магния нитрат Магния оксид Магния перхлорат Магния сплавы Магния сульфат Мазут Майзенхаймера перегруппировка Мак-лафферти перегруппировка Мак-фадьена-стивенса реакция Макарова фазы Маковое масло Макро- и микрокомпоненты Макрокинетика Макролиды Макромолекула Макромономеры Макропористые ионообменные смолы Макрорадикалы Максимальная работа реакции Малапрада реакция Малахитовый зеленый Малеиновая и фумаровая кислоты Малеиновый ангидрид Малоновая кислота Малоновый эфир Малононитрил Мальтены Мальтоза Мальтол Манганаты Манганин Маннаны Маннит Манниха реакция Манноза Маноилоксиды Манометры Маноол Марганец Марганецорганические соединения Марганца карбонат Марганца карбонилы Марганца нитрат Марганца оксиды Марганца сульфат Марганцевые удобрения Маскирование Маслонаполненные каучуки Маслостойкость Масляная кислота Масляные краски Масляные лаки Масляный альдегид Масс-спектрометрия Массовое число Массообмен Мастики Мастикс Масштабный переход Маточные средства Матрица плотности Матричные рибонуклеиновые кислоты Матричный синтез Машинные масла Меди ацетаты Меди гидроксиды Меди карбонаты Меди нитрат Меди оксиды Меди сплавы Меди сульфат Меди сульфиды Меди хлориды Медицинские масла Медноаммиачные волокна Медные удобрения Медь Медьорганические соединения Меервейна реакция Межгалогенные соединения Межкристаллитная коррозия Межмолекулярные взаимодействия Межфазная поликонденсация Межфазные скачки потенциала Межфазный катализ Мезаконовая кислота Мезидин Мезитила окись Мезитилен Мезо Мезоионные соединения Мезоксалевая кислота Мезомерия Мезомерный эффект Мезонная химия Мейера - шустера перегруппировка Мейера реакция Меламин Меланины Мелем Мельхиор Мембранный катализ Мембранный потенциал Мембраны биологические Мембраны жидкие Мембраны ионообменные Мембраны разделительные Менделевий Ментадиены Ментаны Ментены Ментол Ментон Меншуткина реакция Мепробamat Меркаптаны Меркаптохинолины Меркуриметрия Мерсеризация Мета Метаболизм Метакриламид Метакриловая кислота Метакрилонитрил Металепсия Металлиды Металлизация полимеров Металлилхлорид Металлирование Металлическая связь Металлические волокна Металлические кристаллы Металлические радиусы Металлические соединения Металлов окисление Металлокомплексный катализ Металлопласты Металлополимеры Металлопротеиды Металлотермия Металлоцены Металлургия Металлы Металлы органические Метальдегид Метан Метанол Метансульфокислота Метансульфохлорид Метатезис Метафосфаты органические Метил-b-нафтилкетоh Метилакрилат Метилаль Метиламины Метилацетат Метилацетилен Метилбензолсульфонат Метилвинилкетон Метилдихлорфосфат Метилдихлорфосфин Метилдихлорфосфит Метилдихлорфосфонат Метилдофа Метиленовый голубой Метиленхлорид Метилиафталины Метилизобутилкетон Метилизотиоцианат Метилизоцианат Метилметакрилат Метилнонилацетальдегид Метиловый спирт Метилсерная кислота Метилстиролы Метилтетрафторфосфоран Метилтимоловый синий Метилфторид Метилхлорид Метилхлорсиланы Метилцеллюлоза Метилэтилбензолы Метилэтилкетон Метиновые красители Метионин Метионинметилсульфонийхлорид Механизм реакции Механические процессы Механические свойства Механохимия Меченые атомы Меченые соединения Мешалки Микотоксины Микробиологический синтез Микроволновая спектроскопия Микрография Микрокапсулирование Микрокристаллоскопия Микроудобрения Микрофильтрация Микрохимический анализ Микроэлементы Микроэмульсии Миллона реакция Минерал Минерализация Минеральные воды Минеральные удобрения Минорные нуклеозиды Миоглобин Миозин Мирцен Мирценаль Митомицины Михаэлиса-беккера реакция Михаэля реакция Михлера кетон Мицеллирный катализ Мицеллообразование Мицеллы Мицеллярные системы Мицунобу реакция Многокомпонентные системы Многофотонные процессы Мовеин Модакриловые волокна Моделирование Модификация белков Модифицирование древесины Модифицирование полимеров Молекула Молекулярная биология Молекулярная динамика Молекулярная масса Молекулярная масса полимера Молекулярная механика Молекулярность реакции Молекулярные интегралы Молекулярные комплексы Молекулярные кристаллы Молекулярные модели Молекулярные соединения Молекулярные спектры Молекулярный анализ Молибдаты Молибден Молибдена карбонилы Молибдена оксиды Молибдена сплавы Молибдена фториды Молибдена хлориды Молибденовые удобрения Моллюскоциды Молочная кислота Моляльность Молярность Монель-металл Моноаминоксидазы Моноглим Монокристаллов выращивание Монокристаллы Мономеры Мономолекулярные реакции Мономолекулярный слой Мононить Моносахариды Монофенолмонооксигеназы Монохлорукссусная кислота Моноэтаноламин Морин Морозостойкость Морская коррозия Морфин Морфинановые алкалоиды Морфолин Морфотропия Моторные масла Моторные топлива Мочевая кислота Мочевина Мочевины цикл Мощность дозы Моющее действие Мукайямы реакция Мукополисахариды Мультиплетность Мумия Муравьиная кислота Муравьиный альдегид Мурексид Мускусы Мутагены Мутаротация Мутации Мыла Мылонафт Мышьяк Мышьяка гидрид Мышьяка хлориды Мышьякорганические соединения Мюон Мюоний Мягчители Мёссбауэровская спектроскопия