Словарь научных терминов
Меди сплавы
МЕДИ СПЛАВЫ, сплавы на основе меди, содержащие Zn, Sn, Al, Ni, Fe, Mn, Si, Be, Cr, Pb, P и др. легирующие элементы (в сумме до 50%). М. с., состоящие из Сu и одного легирующего элемента, наз. двойными или простыми, содержащие неск. легирующих элементов - многокомпонентными или сложными. В двухкомпонентных М.с. легирующий элемент образует с Сu твердые р-ры замещения, или интерметаллиды, имеющие определенное соотношение числа валентных электронов к числу атомов (э/а). Обычно э/а составляет 3/2 (напр., для CuZn, Cu3Al, Cu5Sn), 21/13 (Cu5Zn8, Cu9Al4, Cu31Sn8) и 7/4 (CuZn3, Cu3Sn). Кроме того, в М.с. часто наблюдается образование более сложных интерметаллич. соединений. По основным легирующим элементам М.с. разделяют на бронзы, латуни и медноникелевые сплавы. Бронзы - сплавы Сu, легированные разл. хим. элементами (Sn, Аl, Be, Pb и др.), кроме Zn и Ni. Подробнее см. ст. Бронзы. Латуни - медно-цинковые сплавы, содержащие от 4 до 50% Zn. Двойные латуни с содержанием Zn до 10% наз. томпаками, до 20% - полутомпаками. Маркируют двойные латуни буквой "Л" и цифрой, указывающей на содержание Сu в сплаве. Среди двойных латуней наиб. распространены сплавы, содержащие 30, 32 и 37% Zn. Латуни с содержанием Zn до 32% являются однофазными (a-латуни), содержащие 32-50%-двухфазными системами (содержат a- и b-фазы). a-Латуни представляют собой твердые р-ры замещения Zn в Сu и имеют гранецентрир. кубич. решетку; b-латуни образуют соед. с э/а = 3/2 и имеют объемноцентрир. кубич. решетку. Сложные латуни получают дополнит. легированием простых латуней разл. элементами, напр. Al, Mn, Sn, Ni, Fe. В марках легированных латуней буквами обозначают качеств. состав сплава, числами - содержание компонентов; первое число означает содержание Сu, следующие - легирующих добавок. Легирующие элементы обозначают буквами: А-Аl, H-Ni, О-Sn, Ц-Zn, C-Pb, Ж-Fe, Мц-Mn, К-Si, Ф-Р, Т-Тi. Hаиб. распространены: оловянная адмиралтейская, или морская (ЛО62-1), алюминиевая, никелевая или алюмоникелевая (марка последней ЛАН59-3-2) и железомарганцевая (ЛЖМц59-1-1). Созданы также многофазные (дисперснотвердеющие) латуни, упрочнение к-рых достигается термич. обработкой со старением, напр. ЛАНКМц75-2-2,5-0,5-0,5. Получают латуни сплавлснием меди с легирующими элементами, обычно в электрич. индукционных печах. Получение латуни прямым сплавлением элементов затруднено из-за большой разницы т-р плавления этих металлов и большой упругости пара Zn, поэтому при сплавлении обычно вводят лигатуру (небольшое кол-во готового сплава Cu-Zn), облегчающую сплавление компонентов. Обрабатывают латуни давлением (деформируемые латуни) или с использованием литья. Латуни отличаются хорошими мех. св-вами, высокой коррозионной стойкостью, пластичностью, прочностью. Зависимость прочности, пластичности и электрич. сопротивления латуней от содержания Zn показана на рисунке. Латуни превосходят Сu по прочности на растяжение: sраст для Сu 450 MПа, для ЛАЖ > 600 MПа, для b-латуни > 740 MПа при удлинении (d) более 12%. Используют латуни для произ-ва листов, лент, полос, труб, проволоки, к-рые изготовляют при горячей или холодной обработке расплава. Из полученных полуфабрикатов изготовляют электротехн. и машиностроит. детали, части приборов, медали, сетки и пр.
http://www.medpulse.ru/image/encyclopedia/2/6/6/8266.jpeg
Зависимость электрич. сопротивления (а), пластичности (б)и прочности (в)латуней от содержания Сu в сплаве: 1 - наклепанная латунь; 2 -отожженная латунь; 3 - литая латунь. К медно-никелевым сплавам относятся мельхиоры (содержат 20-30% Ni и легирующие элементы Fe, Mn и др.), нейзильбер (5-35% Ni, 12-46% Zn), константан (40% Ni, 1,5% Mn), манганин (30% Ni, 12% Mn) и др. Никель образует с медью непрерывный ряд твердых р-ров, его введение повышает коррозионную стойкость, твердость, прочность, модуль упругости и т-ру плавления сплава, понижает его теплопроводность, электрич. проводимость и температурный коэф. электрич. сопротивления. Медноникелевые сплавы обрабатывают давлением в горячем и холодном состоянии. Применяют в кораблестроении, для изготовления деталей, работающих при повышенной т-ре и давлении. Все М.с. обладают высокой стойкостью против атмосферной и газовой коррозии. Для латуней, нейзильбера, бериллиевых и др. бронз она составляет (0,5-30).10-4 мм в год. Существенно замедляют их окисление Be, Zn и Al, способствующие образованию на поверхности сплава защитной пленки; заметно уменьшают коррозию также Si, Sn, Zn, Cd; не влияют - Fe, Ni, Co, Mn, Sb, Ag, P; присутствие в сплаве Сr, Se, As ускоряет его окисление. М.с. устойчивы в атмосфере СО2, сухого NH3, незагрязненного сухого и влажного водяного пара. При длительной (десятки лет) атмосферной коррозии латунь подвергается обесцинкованию. Этот процесс протекает вследствие селективной коррозии Zn или перехода в результате коррозии в р-р Сu и Zn с послед. осаждением Сu в сплаве. При этом наблюдается сохранение медного остова, изделие не меняет своей формы, но утрачивает прочность. Латуни с повыш. содержанием Zn наиб. подвержены такому виду коррозии. Склонность М.с. к обесцинкованию уменьшается в присут. добавок As (не более 0,5% по массе). Подобная селективная коррозия характерна также для алюминиевых и оловянных бронз. М.с. слабо поддаются почвенной коррозии. Исключение -латуни, к-рые в этих условиях подвержены обесцинкованию. В естеств. водных (речных и морских) средах М.с. подвергаются кавитационному разрушению (напр., разрушение корабельных винтов), являющемуся результатом коррозии и действия на сплав высокотурбулентного потока воды. Скорость коррозии в кислотных средах возрастает с повышением т-ры, концентрации к-ты, степени аэрации р-ра и скорости потока. наиб. стойки к к-там оловянные, алюминиевые и кремнистые бронзы, а также медно-никелевые сплавы; применять латуни в контакте с к-тами не рекомендуется. В окислит. средах и горячих щелочных р-рах все М.с. быстро разрушаются. М.с. нельзя также использовать в контакте с Н2О2, расплавленной серой, H2S и SO2. Галогены в сухих условиях мало действуют на М.с., но при наличии влаги вызывают коррозию. На пов-сти М.с. образуются защитные пленки Cu2O, Cu(OH)2, CuCO3 и др. соед. Сu, слабо р-римых в воде. Это способствует появлению с течением времени на пов-сти т. наз. патины, к-рая придает художеств. изделиям из М.с. особый внеш. вид. Специфич. особенность нейзильбера, латуней, бериллиевых, марганцевых и алюминиевых бронз - склонность к коррозии под напряжением, т.е. растрескиванию при одновременном воздействии внеш. сил или остаточных внутр. мех. напряжений и коррозионной среды. Такая коррозия возникает в присут. NH3, паров Hg, р-ров ее солей, в загрязненной влажной атмосфере (сезонная болезнь). Предотвращают коррозионное растрескивание отжигом при т-ре 250-800 °С, снимающим внутр. напряжение сплава, или легированием. Мех. св-ва М.с. изменяются в широких пределах при холодной обработке давлением и при отжиге. Холодной деформацией (наклепом) можно увеличить твердость и предел прочности М.с. в 1,5-3 раза при одновременном снижении пластичности, к-рую затем восстанавливают отжигом. Смягчающий отжиг латуней и бронз после холодной обработки проводят при 600-700 °С. По назначению М.с. подразделяют на антифрикционные, жаропрочные, конструкционные, пружинные и электротехнические. К первым относят свинцовистую бронзу, легированные алюминиевые бронзы, свинцовистую латунь. Применяют их для заливки стальных вкладышей тяжелогруженых подшипников, для изготовления узлов трения, втулок, фрикционных дисков и пр. Жаропрочные М. с. содержат от одного до трех легирующих компонентов (напр., Со, Сr, Mg, Zr) и обычно перед использованием подвергаются термич. обработке. Предназначены для изготовления проводников электрич. тока, эксплуатируемых при высокой т-ре, электродов сварочных машин и т. п. К конструкционным М.с. относят гл. обр. двойные латуни и латуни, легированные небольшими добавками Sn, Al, Fe, Si, Ni, Mn. Из них изготовляют трубы для конденсаторов и радиаторов, посуду, гильзы и др. Пружинные сплавы - гл. обр. бериллиевые бронзы, медно-никелевые сплавы. Их применяют для изготовления пружин, эксплуатируемых до т-ры 130°С. Электротехн. М.с. отличаются малым температурным коэф. электрич. сопротивления, жаропрочностью. Используют такие сплавы для изготовления электрич. приборов, реостатов, резисторов. Лит.: Смирягин А. П., Смирягина Н. А., Белова А. В., Промышленные цветные металлы и сплавы, Справочник, 3 изд., М., 1974; [Металловедение медных сплавов], в сб.: Научные труды института Гипроцветметобработка, М., 1975-85.


-метилацетофенон -метоксиацетофенон 2-меркаптобензотиазол 2-меркаптоэтиламин 2-метил-5-винилпиридин N-метилпирролидон Магнезоны Магнетохимия Магниевые удобрения Магний Магнийорганические соединения Магнитная восприимчивость Магнитная постоянная Магнитно-спиновые эффекты Магнитные материалы Магнитный момент Магния галогениды Магния гидроксид Магния карбонат Магния нитрат Магния оксид Магния перхлорат Магния сплавы Магния сульфат Мазут Майзенхаймера перегруппировка Мак-лафферти перегруппировка Мак-фадьена-стивенса реакция Макарова фазы Маковое масло Макро- и микрокомпоненты Макрокинетика Макролиды Макромолекула Макромономеры Макропористые ионообменные смолы Макрорадикалы Максимальная работа реакции Малапрада реакция Малахитовый зеленый Малеиновая и фумаровая кислоты Малеиновый ангидрид Малоновая кислота Малоновый эфир Малононитрил Мальтены Мальтоза Мальтол Манганаты Манганин Маннаны Маннит Манниха реакция Манноза Маноилоксиды Манометры Маноол Марганец Марганецорганические соединения Марганца карбонат Марганца карбонилы Марганца нитрат Марганца оксиды Марганца сульфат Марганцевые удобрения Маскирование Маслонаполненные каучуки Маслостойкость Масляная кислота Масляные краски Масляные лаки Масляный альдегид Масс-спектрометрия Массовое число Массообмен Мастики Мастикс Масштабный переход Маточные средства Матрица плотности Матричные рибонуклеиновые кислоты Матричный синтез Машинные масла Меди ацетаты Меди гидроксиды Меди карбонаты Меди нитрат Меди оксиды Меди сплавы Меди сульфат Меди сульфиды Меди хлориды Медицинские масла Медноаммиачные волокна Медные удобрения Медь Медьорганические соединения Меервейна реакция Межгалогенные соединения Межкристаллитная коррозия Межмолекулярные взаимодействия Межфазная поликонденсация Межфазные скачки потенциала Межфазный катализ Мезаконовая кислота Мезидин Мезитила окись Мезитилен Мезо Мезоионные соединения Мезоксалевая кислота Мезомерия Мезомерный эффект Мезонная химия Мейера - шустера перегруппировка Мейера реакция Меламин Меланины Мелем Мельхиор Мембранный катализ Мембранный потенциал Мембраны биологические Мембраны жидкие Мембраны ионообменные Мембраны разделительные Менделевий Ментадиены Ментаны Ментены Ментол Ментон Меншуткина реакция Мепробamat Меркаптаны Меркаптохинолины Меркуриметрия Мерсеризация Мета Метаболизм Метакриламид Метакриловая кислота Метакрилонитрил Металепсия Металлиды Металлизация полимеров Металлилхлорид Металлирование Металлическая связь Металлические волокна Металлические кристаллы Металлические радиусы Металлические соединения Металлов окисление Металлокомплексный катализ Металлопласты Металлополимеры Металлопротеиды Металлотермия Металлоцены Металлургия Металлы Металлы органические Метальдегид Метан Метанол Метансульфокислота Метансульфохлорид Метатезис Метафосфаты органические Метил-b-нафтилкетоh Метилакрилат Метилаль Метиламины Метилацетат Метилацетилен Метилбензолсульфонат Метилвинилкетон Метилдихлорфосфат Метилдихлорфосфин Метилдихлорфосфит Метилдихлорфосфонат Метилдофа Метиленовый голубой Метиленхлорид Метилиафталины Метилизобутилкетон Метилизотиоцианат Метилизоцианат Метилметакрилат Метилнонилацетальдегид Метиловый спирт Метилсерная кислота Метилстиролы Метилтетрафторфосфоран Метилтимоловый синий Метилфторид Метилхлорид Метилхлорсиланы Метилцеллюлоза Метилэтилбензолы Метилэтилкетон Метиновые красители Метионин Метионинметилсульфонийхлорид Механизм реакции Механические процессы Механические свойства Механохимия Меченые атомы Меченые соединения Мешалки Микотоксины Микробиологический синтез Микроволновая спектроскопия Микрография Микрокапсулирование Микрокристаллоскопия Микроудобрения Микрофильтрация Микрохимический анализ Микроэлементы Микроэмульсии Миллона реакция Минерал Минерализация Минеральные воды Минеральные удобрения Минорные нуклеозиды Миоглобин Миозин Мирцен Мирценаль Митомицины Михаэлиса-беккера реакция Михаэля реакция Михлера кетон Мицеллирный катализ Мицеллообразование Мицеллы Мицеллярные системы Мицунобу реакция Многокомпонентные системы Многофотонные процессы Мовеин Модакриловые волокна Моделирование Модификация белков Модифицирование древесины Модифицирование полимеров Молекула Молекулярная биология Молекулярная динамика Молекулярная масса Молекулярная масса полимера Молекулярная механика Молекулярность реакции Молекулярные интегралы Молекулярные комплексы Молекулярные кристаллы Молекулярные модели Молекулярные соединения Молекулярные спектры Молекулярный анализ Молибдаты Молибден Молибдена карбонилы Молибдена оксиды Молибдена сплавы Молибдена фториды Молибдена хлориды Молибденовые удобрения Моллюскоциды Молочная кислота Моляльность Молярность Монель-металл Моноаминоксидазы Моноглим Монокристаллов выращивание Монокристаллы Мономеры Мономолекулярные реакции Мономолекулярный слой Мононить Моносахариды Монофенолмонооксигеназы Монохлорукссусная кислота Моноэтаноламин Морин Морозостойкость Морская коррозия Морфин Морфинановые алкалоиды Морфолин Морфотропия Моторные масла Моторные топлива Мочевая кислота Мочевина Мочевины цикл Мощность дозы Моющее действие Мукайямы реакция Мукополисахариды Мультиплетность Мумия Муравьиная кислота Муравьиный альдегид Мурексид Мускусы Мутагены Мутаротация Мутации Мыла Мылонафт Мышьяк Мышьяка гидрид Мышьяка хлориды Мышьякорганические соединения Мюон Мюоний Мягчители Мёссбауэровская спектроскопия