Словарь научных терминов
Магнитный момент
МАГНИТНЫЙ МОМЕНТ, векторная величина, характеризующая магн. св-ва в-ва. М.м. обладают все элементарные частицы и образованные из них системы (атомные ядра, атомы, молекулы). М.м. атомов, молекул и др. многоэлектронных систем складывается из орбитальных М.м. электронов, спиновых М.м. электронов и ядер и вращат. М.м., обусловленного вращением молекулы как целого. Орбитальный М.м. электрона
http://www.medpulse.ru/image/encyclopedia/1/4/9/8149.jpeg,
где е и mе - абс. значения заряда и массы электрона соотв., с - скорость света,
ge - коэф. пропорциональности, наз. гиромагнитным отношением, вектор L - орбитальный момент кол-ва движения, квадрат к-рого равен http://www.medpulse.ru/image/encyclopedia/1/5/0/8150.jpeg (l - орбитальное квантовое число, http://www.medpulse.ru/image/encyclopedia/1/5/1/8151.jpeg - постоянная Планка). Знак минус обусловлен отрицат. зарядом электрона и означает, что направления М.м. mL и орбитального момента L противоположны. Электронный орбитальный М. м. значителен у многоэлектронных атомов и ионов с частично заполненными d- и f-орбиталями, напр. у атомов и ионов переходных металлов, а также у двухатомных молекул (напр., NO). У многоатомных орг. молекул и радикалов в осн. состоянии электронный орбитальный М.м. практически отсутствует. М.м., обусловленный спином электрона, ms = — gges, где вектор s - собств. момент кол-ва движения (спин), квадрат к-рого равен http://www.medpulse.ru/image/encyclopedia/1/5/2/8152.jpeg (s - спиновое квантовое число), g -множитель Ланде (g-фактор), равный для электрона 2,0023. Направление спинового М.м. электрона также противоположно направлению спина (собств. момента кол-ва движения). М.м. электрона часто выражают через магнетон Бора http://www.medpulse.ru/image/encyclopedia/1/5/3/8153.jpeg Дж/Гс; тогда http://www.medpulse.ru/image/encyclopedia/1/5/4/8154.jpeg и М.м., http://www.medpulse.ru/image/encyclopedia/1/5/5/8155.jpeg обусловленный спином ядра, определяется как mn = gnI, где gn - гиромагнитное отношение для ядра, а квадрат вектора I равен http://www.medpulse.ru/image/encyclopedia/1/5/6/8156.jpeg , где I - спиновое квантовое число ядра. Ядерный М.м. часто выражают через ядерный магнетон http://www.medpulse.ru/image/encyclopedia/1/5/7/8157.jpeg Дж/Гс, где тр - масса протона; тогда http://www.medpulse.ru/image/encyclopedia/1/5/8/8158.jpegи http://www.medpulse.ru/image/encyclopedia/1/5/9/8159.jpeg, где gng-фактор ядра. Последняя величина имеет разл. значения для разных ядер и определяется внутр. (нуклонной) структурой ядра. Направление М.м. протона совпадает с направлением его спина; для др. ядер (напр., 15N) оно м. б. противоположным. Орбитальный М.м. mL, спиновые электронный и ядерный М. м. ms и mn пропорциональны соответствующим моментам кол-ва движения L, S и I, но коэф. пропорциональности для них различны. По этой причине направление М.м. атомных и мол. систем, как правило, не совпадает с направлением вектора их полного момента кол-ва движения. У атомов и ионов, содержащих неспаренные электроны, главный вклад в М. м. вносят mL и ms: у орг. радикалов М. м. определяется почти исключительно ms, а небольшой вклад mL приводит лишь к малому отличию g-фактора радикалов от g-фактора своб. электронов. В магн. поле напряженности Н (вектор с компонентами Нх, Нy и Нz) энергия Е частицы изменяется:

E=E0 - mH - 1/2H.cH,

где E0 - энергия частицы в отсутствие поля, c - тензор, наз. магн. восприимчивостью частицы (приведены только первый и второй члены разложения в ряд по Н) (см. Зеемана эффект). Выражение для энергии Е частицы в магн. поле позволяет определить М. м. частицы как производную:

m= - дЕ/дН,

а компоненты тензора магн. восприимчивости c - как втoрые производные:

cij = - д2E/дHiдHj (i, j = х, у или z).

Для макроскопич. тел М.м. всех составляющих тело частиц усредняются, что приводит к появлению вектора намагниченности М, или М.м. единицы объема. Как правило, для элементарного объема dV

M = M0 + cH,

где М0 - намагниченность в отсутствие поля, c - макроскопич. магнитная восприимчивость, к-рая появляется в результате усреднения магн. восприимчивостей c отдельных частиц. У ферромагнетиков и ферримагнетиков M0 0, у диамагнетиков и парамагнетиков M0 = 0; в магн. поле диамагнетики и парамагнетики намагничиваются (М 0), причем для диамагнетиков c < 0, для парамагнетиков c > 0. Эксперим. измерение намагниченности М позволяет судить о том, в каких квантовых состояниях находятся составляющие тело частицы (атомы, ионы, молекулы). Однако из-за обменного взаимодействия М.м. изолированных частиц часто не равны М.м. тех же частиц в кристаллич. решетке, вычисляемым по намагниченности чистого в-ва или твердого р-ра. Лит.: Вонсовский С. В., Магнетизм микрочастиц, М., 1973; Калинников В. Т., Ракитин Ю. В., Введение в магнетохимию, М., 1980; Уайт Р., Квантовая теория магнетизма, пер. с англ., 2 изд., М., 1985.


-метилацетофенон -метоксиацетофенон 2-меркаптобензотиазол 2-меркаптоэтиламин 2-метил-5-винилпиридин N-метилпирролидон Магнезоны Магнетохимия Магниевые удобрения Магний Магнийорганические соединения Магнитная восприимчивость Магнитная постоянная Магнитно-спиновые эффекты Магнитные материалы Магнитный момент Магния галогениды Магния гидроксид Магния карбонат Магния нитрат Магния оксид Магния перхлорат Магния сплавы Магния сульфат Мазут Майзенхаймера перегруппировка Мак-лафферти перегруппировка Мак-фадьена-стивенса реакция Макарова фазы Маковое масло Макро- и микрокомпоненты Макрокинетика Макролиды Макромолекула Макромономеры Макропористые ионообменные смолы Макрорадикалы Максимальная работа реакции Малапрада реакция Малахитовый зеленый Малеиновая и фумаровая кислоты Малеиновый ангидрид Малоновая кислота Малоновый эфир Малононитрил Мальтены Мальтоза Мальтол Манганаты Манганин Маннаны Маннит Манниха реакция Манноза Маноилоксиды Манометры Маноол Марганец Марганецорганические соединения Марганца карбонат Марганца карбонилы Марганца нитрат Марганца оксиды Марганца сульфат Марганцевые удобрения Маскирование Маслонаполненные каучуки Маслостойкость Масляная кислота Масляные краски Масляные лаки Масляный альдегид Масс-спектрометрия Массовое число Массообмен Мастики Мастикс Масштабный переход Маточные средства Матрица плотности Матричные рибонуклеиновые кислоты Матричный синтез Машинные масла Меди ацетаты Меди гидроксиды Меди карбонаты Меди нитрат Меди оксиды Меди сплавы Меди сульфат Меди сульфиды Меди хлориды Медицинские масла Медноаммиачные волокна Медные удобрения Медь Медьорганические соединения Меервейна реакция Межгалогенные соединения Межкристаллитная коррозия Межмолекулярные взаимодействия Межфазная поликонденсация Межфазные скачки потенциала Межфазный катализ Мезаконовая кислота Мезидин Мезитила окись Мезитилен Мезо Мезоионные соединения Мезоксалевая кислота Мезомерия Мезомерный эффект Мезонная химия Мейера - шустера перегруппировка Мейера реакция Меламин Меланины Мелем Мельхиор Мембранный катализ Мембранный потенциал Мембраны биологические Мембраны жидкие Мембраны ионообменные Мембраны разделительные Менделевий Ментадиены Ментаны Ментены Ментол Ментон Меншуткина реакция Мепробamat Меркаптаны Меркаптохинолины Меркуриметрия Мерсеризация Мета Метаболизм Метакриламид Метакриловая кислота Метакрилонитрил Металепсия Металлиды Металлизация полимеров Металлилхлорид Металлирование Металлическая связь Металлические волокна Металлические кристаллы Металлические радиусы Металлические соединения Металлов окисление Металлокомплексный катализ Металлопласты Металлополимеры Металлопротеиды Металлотермия Металлоцены Металлургия Металлы Металлы органические Метальдегид Метан Метанол Метансульфокислота Метансульфохлорид Метатезис Метафосфаты органические Метил-b-нафтилкетоh Метилакрилат Метилаль Метиламины Метилацетат Метилацетилен Метилбензолсульфонат Метилвинилкетон Метилдихлорфосфат Метилдихлорфосфин Метилдихлорфосфит Метилдихлорфосфонат Метилдофа Метиленовый голубой Метиленхлорид Метилиафталины Метилизобутилкетон Метилизотиоцианат Метилизоцианат Метилметакрилат Метилнонилацетальдегид Метиловый спирт Метилсерная кислота Метилстиролы Метилтетрафторфосфоран Метилтимоловый синий Метилфторид Метилхлорид Метилхлорсиланы Метилцеллюлоза Метилэтилбензолы Метилэтилкетон Метиновые красители Метионин Метионинметилсульфонийхлорид Механизм реакции Механические процессы Механические свойства Механохимия Меченые атомы Меченые соединения Мешалки Микотоксины Микробиологический синтез Микроволновая спектроскопия Микрография Микрокапсулирование Микрокристаллоскопия Микроудобрения Микрофильтрация Микрохимический анализ Микроэлементы Микроэмульсии Миллона реакция Минерал Минерализация Минеральные воды Минеральные удобрения Минорные нуклеозиды Миоглобин Миозин Мирцен Мирценаль Митомицины Михаэлиса-беккера реакция Михаэля реакция Михлера кетон Мицеллирный катализ Мицеллообразование Мицеллы Мицеллярные системы Мицунобу реакция Многокомпонентные системы Многофотонные процессы Мовеин Модакриловые волокна Моделирование Модификация белков Модифицирование древесины Модифицирование полимеров Молекула Молекулярная биология Молекулярная динамика Молекулярная масса Молекулярная масса полимера Молекулярная механика Молекулярность реакции Молекулярные интегралы Молекулярные комплексы Молекулярные кристаллы Молекулярные модели Молекулярные соединения Молекулярные спектры Молекулярный анализ Молибдаты Молибден Молибдена карбонилы Молибдена оксиды Молибдена сплавы Молибдена фториды Молибдена хлориды Молибденовые удобрения Моллюскоциды Молочная кислота Моляльность Молярность Монель-металл Моноаминоксидазы Моноглим Монокристаллов выращивание Монокристаллы Мономеры Мономолекулярные реакции Мономолекулярный слой Мононить Моносахариды Монофенолмонооксигеназы Монохлорукссусная кислота Моноэтаноламин Морин Морозостойкость Морская коррозия Морфин Морфинановые алкалоиды Морфолин Морфотропия Моторные масла Моторные топлива Мочевая кислота Мочевина Мочевины цикл Мощность дозы Моющее действие Мукайямы реакция Мукополисахариды Мультиплетность Мумия Муравьиная кислота Муравьиный альдегид Мурексид Мускусы Мутагены Мутаротация Мутации Мыла Мылонафт Мышьяк Мышьяка гидрид Мышьяка хлориды Мышьякорганические соединения Мюон Мюоний Мягчители Мёссбауэровская спектроскопия