Словарь научных терминов
Кристаллического поля теория
КРИСТАЛЛИЧЕСКОГО ПOЛЯ ТЕОРИЯ, квантовохим. теория, в к-рой низшие по энергии состояния молекулы описываются как состояния одного атома (иона), находящегося в электростатич. поле, созданном остальными частицами. Как правило, К. п. т. применяется к координац. соед., кристаллам и др. системам, в структуре к-рых можно выделить центр. атом и окружающие его ионы или молекулы (в случае координац. соед. -лиганды). Лиганды моделируют системой точечных зарядов или диполей, а создаваемое ими электростатич. поле рассматривают по аналогии с внутрикристаллич. полем, к-рое обусловлено положит. и отрицат. зарядами ионов в кристалле. Поэтому такое приближение наз. теорией кристаллич. поля. В рамках К. п. т. предполагается, что энергия электронного возбуждения лигандов намного больше, чем энергия возбуждения центр. атома, а взаимод. лигандов и центр. атома не очень сильно. Поэтому низшие по энергии электронные состояния комплекса в целом рассматривают как состояния центр. атома (иона), изменившиеся по сравнению с состояниями своб. атома под действием электростатич. поля лигандов. Эти изменения оценивают методами возмущений теории. К. п. т. позволяет установить относит. положение энергетич. уровней и энергии переходов между ними для молекулы или кристалла при заданном расположении лигандов в пространстве, изучить изменение энергетич. уровней при замещении лигандов или центр. атома, при изменении геом. строения комплекса, появлении на пов-сти кристалла адсорбир. частиц и др. Электронное строение атомов или ионов в кристалле и мол. комплексах определяется мн. факторами, среди к-рых К. п. т. выделяет два: энергия взаимод. лигандов с центр. атомом и энергия межэлектронного отталкивания, характеризующая состояние валентных электронов центр. атома. Характерное для атома в данной степени окисления отталкивание электронов не меняется в разных комплексах, а интенсивность поля лигандов возрастает в экспериментально установленном (т. наз. спектрохим.) ряду: I-<Вr-<Сl-<F-<ОН-2О<NH3<NO2-<CN-, что позволяет различить два предельных случая: 1) слабое поле: межэлектронное отталкивание намного больше, чем воздействие поля лигандов. В этом случае за основу берут детально изученные спектроскопич. методами состояния многоэлектронного атома, а влияние лигандов учитывают с помощью теории возмущений. 2) Сильное поле: воздействие лигандов на центр. атом больше, чем влияние межэлектронного отталкивания. В этом случае сначала изучают состояния отдельных электронов атома в поле лигандов, а затем учитывают поправки на межэлектронное взаимодействие. Оба подхода были бы эквивалентны, если бы ур-ние Шрёдингера для атома в поле лигандов решалось точно, однако при приближенном решении этого ур-ния с учетом наиб. важных вкладов в энергию физически правильное описание каждого комплекса дает, как правило, лишь один из подходов. Для свободного сферически симметричного атома обычно имеет место вырождение энергетических уровней, поэтому для качеств. анализа в рамках К. п. т. достаточно учесть симметрию расположения лигандов (следовательно, симметрию создаваемого ими поля) и методами теории групп описать снятие вырождения под действием поля лигандов. Особенно просто выполнить анализ, рассматривая состояния отдельных электронов в атоме. Напр., комплекс [Fe(CN)6]4- имеет октаэдрич. строение, а своб. иону Fe2+ отвечает электронная конфигурация d6. Вырождение пяти d-орбиталей иона снимается частично в октаэдрич. поле (рис. 1), что приводит к образованию двукратно вырожденного уровня еg и трехкратно вырожденного уровня t2g. Расчет методами теории групп показывает, что если за начало отсчета энергии принять энергию d-уровня, то энергии уровней ед и t2g равны соотв. e0+3/5D и e0-2/5D, где e0 - изменение энергии d-уровня под действием сферически симметричной части поля лигандов, а D - энергия перехода между уровнями еg и t2g. Поле лигандов CN- достаточно сильное, и в первом приближении взаимод. электронов можно пренебречь, т.е. считать, что электронная конфигурация иона Fe2+ в комплексе для основного состояния t62g (рис. 2); основное состояние иона в комплексе полносимметрично и отвечает нулевому суммарному спину (состояние 1А1g). Комплекс [Fe(H2O)6] также имеет октаэдрич. структуру, и снятие вырождения d-уровней своб. атома можно описать рис. 1, однако поле лигандов гораздо слабее. В этом случае при заполнении электронами уровней необходимо учитывать, что величина А мала по сравнению с межэлектронным отталкиванием, т. е. использовать правило Хунда (см. Мультиплетность). Основное состояние комплекса отвечает тогда заполнению уровней, к-рое приводит к максимально возможной мультиплетности системы, равной 5 (рис. 2, а). Рассмотренная ситуация характерна для мн. комплексов: в случае сильного поля комплексы обычно являются низкоспиновыми, в случае слабого поля - высокоспиновыми. Использование сведений о состояниях отдельных электронов в атоме не является необходимым в К. п. т., т.к. эти состояния определены лишь в приближениях типа молекулярных орбиталей методов, а теоретич. методы К. п. т. можно применять непосредственно к состояниям атома как целого. Напр., своб. ион Fe2+ имеет основное состояние типа 5D. Под действием слабого поля лигандов суммарный спин не меняется, а снятие пятикратного
http://www.medpulse.ru/image/encyclopedia/9/4/0/7940.jpeg
Рис. 1. Снятие вырождения d-уровней в поле октаэдрич. симметрии.
Рис. 2. Основное состояние атома с электронной конфигурацией d6 в октаэдрич. поле лигандов в случае слабого поля (а) и сильного поля (б).

вырождения D-уровней атома описывается теми же законами, что и снятие вырождения одноэлектронных d-уровней. В поле октаэдрич. симметрии D-уровни расщепляются на уровни типов Еg и T2g, т.е. низшие состояния иона Fe2+ в слабом октаэдрич. поле лигандов 5Еg и 5T2g. наиб. сложны для анализа случаи среднего поля, когда необходимо одновременно учитывать и межэлектронное взаимод., и влияние поля лигандов. В подобных случаях используют результаты модельных расчетов в виде таблиц или диаграмм (напр., т. наз. диаграмм Танабе-Сугано) или экстраполируют результаты расчетов, сделанных для предельных случаев слабого и сильного поля. Применение К. п. т. ограничено системами, в к-рых центр. атом слабо влияет на лиганды и не образует с ними прочных связей. В противном случае необходимо учитывать изменения состояний лигандов (см. Поля лигандов теория). Благодаря ясному физ. смыслу и простоте оценок, основанных на законах симметрии, К. п. т. применяется для интерпретации оптич. и ЭПР-спектров мол. комплексов и кристаллов, при анализе строения координац. соед., устойчивости ионов в р-рах, каталитич. активности и др.; особенно широко ее используют применительно к соединениям элементов с незаполненными полностью d- или f-оболочками. К. п. т. развита X. Бете (1929) для изучения спектральных характеристик кристаллов. Лит.. Берсукер И. Б., Электронное строение и свойства координационных соединений, 2 изд., Л., 1976; Свиридов Д. Т.. Смирнов Ю. Ф.. Теория оптических спектров ионов переходных металлов, М., 1917. В, И. Пупышев.


-капролактам Keтoальдегиды Кабачника-филдса реакция Кавитация Кадио-ходкевича реакция Кадионы Кадмий Кадмийорганические соединения Кадмия антимонид Кадмия галогениды Кадмия нитрат Кадмия оксид Кадмия селенид Кадмия сульфат Кадмия сульфид Кадмия теллурид Кадмия хлорид Казеин Каландрование полимеров Калий Калийная селитра Калийные удобрения Калифорний Калия бромид Калия гексацианоферраты Калия гидрокарбонат Калия гидроксид Калия дихромат Калия дицианоаурат(i) Калия иодид Калия карбонат Калия нитрат Калия оксид Калия перманганат Калия пероксодикарбонат Калия пероксосульфаты Калия сульфат Калия сульфиды Калия фосфаты Калия фторид Калия хлорид Калия цианат Калия цианид Калия этилксантогенат Каломель Каломельный электрод Калориметрия Кальмодулин Кальциевая селитра Кальций Кальцийорганические соединения Кальцитонин Кальциферолы Кальция алюминаты Кальция бораты Кальция вольфраматы Кальция галогениды Кальция гидроксид Кальция гипохлорит Кальция карбид Кальция карбонат Кальция нитрат Кальция оксид Кальция силикаты Кальция сульфат Кальция фосфаты Кальция фторид Кальция хлорид Кальция цианамид Каменноугольная смола Каменноугольные масла Каменные угли Камфан Камфен Камфеновые перегруппировки Камфора Канатные смазки Канифоль Канниццаро реакция Канцерогенные вещества Каолин Капельный анализ Капиллярная конденсация Капиллярная хроматография Капиллярные явления Капиллярный осмос Каплеулавливание Каприловая кислота Капрон Капроновая кислота Капсаицин Капсулирование Каптакс Карбазол Карбамид Карбамидные смолы Карбаминовая кислота Карбанионы Карбеновые комплексы переходных металлов Карбены Карбиды Карбиламины Карбин Карбиновые комплексы переходных металлов Карбитолы Карбкатионы Карбодиимиды Карбодифосфораны Карбоксилатные каучуки Карбоксилирование Карбоксиметилцеллюлоза Карбоксипептидазы Карбоксиэстеразы Карболины Карбонаты неорганические Карбонаты органические Карбонаты природные Карбонизация Карбонилирование Карбонилфторид Карбонилы металлов Карбонильные соединения Карбония ионы Карбоновые кислоты Карбопласты Карборансодержащие полимеры Карбораны Карборунд Карбоциклические соединения Карвон Кардовые полимеры Карены Кариофиллен Кариуса метод Каркасные соединения Карнаубский воск Карнитин Карнозин Каротиноиды Каррагинаны Касторовое масло Катаболизм Катализ Катализаторы Катализаторы гидрирования Катализаторы дегидрирования Катализаторы окисления Катализаторы полимеризации Каталитический крекинг Каталитический реформинг Каталитических реакций кинетика Катапины Катенаны Катепсины Катехоламины Катион-радикалы Катиониты Катионная полимеризация Катионные красители Катионообменные смолы Катионотропные перегруппировки Катионы Катодная защита Катодолюминесцентный микроанализ Каустобиолиты Каучук натуральный Каучуки синтетические Качественный анализ Квадрупольный момент Квазикристалл Квазирацематы Квазистационарности приближение Квантовая механика Квантовая химия Квантовое состояние Квантовые переходы Квантовый выход Кварц Кварцевое стекло Квасцы Кверцетин Кедровое масло Керамика Кератины Кермель Керметы Керосин Керра эффект Кетали Кетены Кетимины Кетокарбoновые кислoты Кетокислоты Кетон малины Кетоны Кибернетика Кижнера реакция Кижнера-вольфа реакция Килиани-фишера реакция Кинe-замещeние Кинетика химическая Кинетическая кривая Кинетическая теория газов Кинетические методы анализа Кинетический изотопный эффект Кинетическое уравнение Кинины Киноплёнки Кипение Кипреналь Кипящий слой Кирсанова реакция Кирхгофа уравнение Кислoтно-оснoвное титрование Кислoтно-основнoй катализ Кислород Кислорода фториды Кислородный индекс Кислотное число Кислотные красители Кислотоупoрные прирoдные материалы Кислоты и основания Кислоты неорганические Клeя-киннера-пeррена реакция Клайзена конденсация Клайзена перегруппировка Клайзена-шмидта реакция Клапейрона-клаузиуса уравнение Клапейрона-менделеева уравнение Кларки химических элементов Классификация Классификация гидравлическая Кластеры Клатраты Клеевые краски Клеи природные Клеи синтетические Клей Клей неорганические Клемменсена реакция Клетки эффект Клешневидные соединения Клофелин Клофибрат Кнорра реакция Кнёвенагеля реакция Коагулянты Коагуляция Коалесценция Коацервация Кобальта ацетат Кобальта галогениды Кобальта гидроксиды Кобальта карбонаты Кобальта карбонилы Кобальта нитраты Кобальта оксиды Кобальта сплавы Кобальта сульфаты Кобальта хлориды Кобальтовые удобрения Кобальторганические соединения Кобамидные коферменты Ковалентная связь Ковалентные кристаллы Ковалентные радиусы Ковар Когезия Кодеин Кодон Кожа Кожа искусственная Койевая кислота Кокаин Кокосовое масло Кокс каменноугольный Кокс нефтяной Кокс пековый Коксование Коксовое число Коксохимия Коксуемость углей Колебательные реакции Колебательные спектры Количественный анализ Коллoидные раствoры Коллаген Коллидины Коллоидная химия Коллоидные системы Коллоксилин Колориметрический анализ Колхициновые алкалоиды Кольбе реакции Кольбе шмитта реакция Кольрауша закон Комбинационного рассеяния спектроскопия Компаунды полимерные Компенсационный эффект Комплексные соединения Комплексометрия Комплексонометрия Комплексоны Комплексообразующие ионообменные смолы Комплемент Комплементарность Композиты Композиционные материалы Компонент системы Компрессорные масла Компрессорные машины Компьютерный синтез Конго красный Кондакова реакция Конденсации реакции Конденсация Конденсация фракционная Кондуктометрия Конкурирующих реакций метод Коновалова законы Коновалова реакция Конопляное масло Консервационные масла Консервационные смазки Консистентные смазки Константа равновесия Константа скорости Константан Конструкционная керамика Контакт петрова Контактная очистка Конфигурационного взаимодействия метод Конфигурация стереохимическая Конформации молекулы Конформационные эффекты Конформационный анализ Концентрация Концентрирование Координата реакции Координациoнно-иoнная полимеризация Координационная связь Координационное число Координационные полимеры Координационные полиэдры Координационные соединения Копалы Кордиты Коричный альдегид Коричный спирт Кормовые фосфаты Корреляционные соотношения Корреляция конфигураций Корриноиды Коррозионная усталость Коррозионностойкие материалы Коррозионные испытания Коррозия металлов Коррозия под напряжением Кортикоиды Коршун климовой метод Космические смазки Космохимия Котельные топлива Коттона эффект Кофеин Кофермент Коферменты Коха-хаафа реакция Коэрцитивная сила Крапплак Красители природные Красители синтетические Краски Красуского правило Кратные связи Краун-эфиры Крахмал Крашение бумаги Крашение волокон Крашение древесины Крашение кожи Крашение меха Крашение оксидированного алюминия Крашение пластических масс Крашение резино-технических изделий Креатинфосфорная кислота Кребса цикл Крезолы Крекинг Кремнефтористоводородная кислота Кремниевые кислоты Кремний Кремнийорганические жидкости Кремнийорганические каучуки Кремнийорганические лаки Кремнийорганические полимеры Кремнийорганические соединения Кремнийэлементоорганические соединения Кремния диоксид Кремния иодиды Кремния карбид Кремния нитрид Кремния оксид Кремния фториды Кремния хлориды Криоскопия Криохимия Криптанды Криптон Криптона дифторид Кристаллизационные методы разделения смесей Кристаллизация Кристаллическая структура Кристаллический фиолетовый Кристаллического поля теория Кристаллическое состояние Кристаллическое состояние полимеров Кристаллогидраты Кристаллосольваты Кристаллофосфоры Кристаллохимия Кристаллы Критические явления Критическое состояние Кровезаменители Кроны Кротоновая кислота Кротоновая конденсация Кротоновый альдегид Круговой дихроизм Крёнке реакция Ксаитемовые красители Ксантин Ксантинола никотинат Ксантогенаты Ксантопротеиновая реакция Ксантотоксин Ксенон Ксенона фториды Ксиленоловый оранжевый Ксилидины Ксилилендиамины Ксилит Ксилолы Кубовые красители Кубогены Кубозоли Кукурузное масло Кулонометрия Кумарин Кумароно-инденовые смолы Кумилгидропероксид Кумилпероксид Кумол Кумулены Кунжутное масло Купманса теорема Купферон Курареподобные средства Курарин Курнакова соединения Курциуса реакция Курчатовий Кучерова реакция Кьельдаля метод Кэмпса реакция Кэрролла-каймела реакция Кюри точка Кюрий Кёнигса-кнорра реакция