Словарь научных терминов
Кремнийорганические соединения
КРЕМНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ, содержат связь Si—С Иногда к К. с. относят все орг. в-ва, содержащие Si, напр. зфиры кремниевых к-т.
Классификация и номенклатура. К. с. подразделяют на "мономерныe", содержащие один или неск. атомов Si, к-рые рассматриваются в настоящей статье, и кремнийорганические полимеры. наиб. изучены след. группы К. с.: органогалогeпсиланы RnSiHal4-n (n=1-3) и RnSiHmHal4-n-m (n и m = 1,2; m+n=2,3); алкоксисиланы и ароксисиланы Si(OR)4, R'nSi(OR)4-n; органогидросиланы RnSiH4-n; органоаминосиланы RnSi(NR'2)4-n; органосиланолы RnSi(OH)4-nI; органоацилоксисиланы RnSi(OCOR')4-n (n=1-3); силатраны и др.; соед. с нeск. атомами Si - органосилоксаны со связями Si—О—Si, органосилазаны со связями Si—N—Si, органосилатианы (Si—S—Si), полиорганосиланы (Si—Si) и др. Большую группу составляют карбофункциональные К. с., из к-рых наиб. исследованы в-ва, содержащие в орг. радикале атомы галогена, амино-, гидрокси-, алкокси-, эпокси-группу и т. д.; соeд., содержащие группировку SiM, SiOM или SiRM (М - атом металла или неметалла, напр. Li, Na, К, В, Al, Sn, Ti, P, Fe), - т. наз. кремнийэлемeнтоорганические соединения; а также гетероциклич. К. с., содержащие один или более атомов Si в цикле, напр. силациклобутан, 10,10-дихлор-9-окса-10-сила-9,10-дигидрофенантрен ("оксафен") и др. По номенклатуре ИЮПАК, соед. с одним атомом Si рассматривают как производные силана SiH4, указывая в наш. все связанные с атомом Si заместители, кроме атомов Н, напр. (CH3)2SillCl-диметилхлорсилан, CF3CH2CH2SiCl3-3,3,3-трифторпропилтрихлорсилан. Часто за основу берут назв. орг. соед., добавляя назв. соответствующего кремнийсодержащего заместителя, напр. Cl2(CH3)SiCH2Si(CH3)Cl2-биc-(метилдихлорсилил) метан.
Физические свойства. Замещение атома водорода у атома Si на др. атомы, орг. и неорг. группы увеличивает т-ры кипения К. с., изменяет в широком диапазоне и др. их св-ва (см. табл.). Для К. с. характерно понижение т-р плавления и кипения при переходе от производных дисилана к соответствующим производным дисилоксана, несмотря на увеличение мол. м., что является следствием низкого межмол. взаимод. последних. Большинство К. с. раств. в орг. р-ри гелях. Нек-рые К. с., содержащие гидрофильные группы (напр., [НО(СН3)2Si]2О, (C2H5O)3Si(CH2)3NH2 и др.), раств. в воде. Органосиланы, органосилоксаны-диэлектрики с высоким уд. объемным сопротивлением 1.1014-1.1016 Ом.см, элсктрич. прочностью 20-200 кВ/мм и tgd 0,01-0,001. В И К спектрах К. с. полосы поглощения, обусловленные крeмнийсодержащими фрагментами, примерно в пять раз более интенсивны, чем полосы соответствующих углеродных аналогов. И К спектры характеризуются след. полосами поглощения (в см-1): 2250-2150 (SiH), 1250 (Si—CH3), 1630, 1125 (Si-C6H5), 3700-3650, 3400-3200 (Si-OH своб.), 1100-1000 (Si—О—Si), 800-670 (Si—Cl). В отличие от соед. углерода, для спектров ЯМР К. с. характерна нелинейная зависимость величины хим. сдвига от числа однородных заместителей, связанных с центр. атомом Si. Масс-спектры К. с, характеризуются наличием пиков молекулярных (квазимолекулярных) ионов и малым числом осколочных ионов. Важную роль играют разнообразные перегруппировочные процессы, напр. внутримол. диспропорционирование.
Химические свойства. Специфика хим. св-в К. с. в сравнении с соед. углерода обусловлена низкой электроотрицатсльностью атома Si и его способностью образовывать донорно-акцспторные связи с использованием одной или двух d-орбиталей. Координац. число атома Si может достигать 6. Атом Si имеет большую величину атомного радиуса (0,133 нм) в сравнении с атомным радиусом С (0,077 нм); для него не характерно образование двойных и тройных связей.
http://www.medpulse.ru/image/encyclopedia/9/0/0/7900.jpeg
Большинство хим. превращ. К. с. основано на хим. инертности связей Si—С и высокой реакц. способности связей Si—Hal, Si—О, Si—N, Si—H, Si-O—H, Si—Si и т. п. и функц. групп в орг. заместителях у атома Si(R3SiCH2Cl, R3SiCH=CH2 и пр.). Прочность связи Si—С в значит. степени зависит от природы орг. заместителя и составляет (в кДж/моль): Si—С6Н5 310, Si-CH3 314, Si—С2Н5 260, Si—С3Н7 239, Si—С4Н9 218. Электроноакцепторные заместители у атома С, связанного с атомом Si, повышают устойчивость связи Si—С по отношению к электроф. реагентам и облегчают атаку нуклеоф. реагентами. Для К. с. характерно гетеролитич. расщепление связей Si с электроотрицат. заместителями, а в случае связей Si—H, Si—Si - как гетеролитич., так и гомолитич. расщепление. Первичными продуктами гидролиза К. с., содержащих у атома Si реакдионноспособный заместитель, являются силанолы:

R3SiX + Н2O:R3SiOH+НХ X=Сl, OR', OCOR', NR'2, SR' и т.д.

Скорость гидролиза определяется природой заместителей у атома Si, pH среды, присутствием катализаторов. К. с., у к-рых X=Cl, OCH3, OCOCH3, NR2, SR гидролизуются уже влагой воздуха; в щелочной среде образуются силаноляты, напр.:

R3SiX+2NaOH:R3SiONa+Н2О

Во мн. технол. процессах силанолы - промежут. продукты, к-рые далее конденсируются с образованием силоксанов, напр.:
http://www.medpulse.ru/image/encyclopedia/9/0/1/7901.jpeg
В связи с этим гидролиз К. с. часто наз. процессом "гидролитич. поликонденсации". К. с. со связями Si—H, Si—Si гидролизуются в щелочной среде до силоксанов с количеств. выделением водорода, напр.:
http://www.medpulse.ru/image/encyclopedia/9/0/2/7902.jpeg
Объемные заместители у атома Si повышают гидролитич. стабильность К. с. Легко гидролизующиеся К. с. вступают в протолитич. р-ции со спиртами, к-тами или аминами, напр.:

R3SiX+AlkOH:R3SiOAlk+НХ X=Cl, OR', OCOR', NR'2, SR' и др.

К протолитич. р-циям относятся также аммонолиз и аминолиз органогалогенсиланов:

R3SiCl+2R'2NH:R3SiNR'2+R'2NH HCl

К. с. со связями Si—H или Si—Si легко реагируют с галогенами, напр.:

R3SiH+X2:R3SiX+HX

X=Cl, Br, I R3SiSiR3+Br2:2R3SiBr

Способность активного атома водорода или металла в орг. соед. замещаться на триалкилсилильную группу используют для т. наз. силильной защиты, или силилирования (силилированием наз. также введение замещенной силильной группы в хим. соед.). Для этой цели соед. обрабатывают (CH3)3SiX [X=Cl, N(C2H5)2, NHSi(CH3)3 и др.] или (C2H5)3SiH в присут. катализаторов (PdCl2, NiCl2, основания и т. д.). При протолизе полученных триалкилсилильных производных водой, спиртом, водными р-рами к-т и оснований атом водорода регенерируется, напр.:
http://www.medpulse.ru/image/encyclopedia/9/0/3/7903.jpeg
Временная замена подвижного атома Н на триалкилсилильную группу позволяет выделять, очищать и идентифицировать малолетучие и термически нестабильные орг. соед. К. с. способны к мeжмол. обмену заместителями в присут. катализаторов, напр. АlСl3 (р-ция диспропорционирования):

CH3SiCl3+(C6H5)2SiCl2DCH3(C6H5)SiCl2+C6H5SiCl3

Переэтерификация алкоксисиланов протекает в присут. к-т и оснований; при действии гидридов металлов хлор- и алкоксисиланы восстанавливаются, напр.:

(C6H5)2Si(OC2H5)2+2С6Н5ОН:(C6H5)2Si(OC6H5)2+2Н5ОН4(CH3)3SiCl+LiAlH4:4(CH3)3SiH+LiCl+АlСl3

К. с. вступают в р-ции конденсации. Конденсация триорганосиланолов и лиорганосиландиолов с выделением воды особенно легко протекает в присут. к-т и оснований: 2(CH3)3SiOH:(CH3)3SiOSi(CH3)32О. При увеличении числа гидроксильных групп у атома Si склонность к этой р-ции повышается. Алкоксисиланы конденсируются при т-рe выше 200 °С, образуя наряду с силоксанами простые эфиры (в случае мстокси- и этоксисиланов) или непредельные сосл. при трех и более атомах углерода в алкильной группе, напр.:

2R3SiOCH3:R3SiOSiR3+СН3ОСН3

Для К. с. характерна также гетeрофункцион. конденсация, напр. силанолов с хлорсиланами и силазанами:
http://www.medpulse.ru/image/encyclopedia/9/0/4/7904.jpeg
Алкоксисиланы конденсируются с силанолами при 20 С в присут. катализаторов (оловоорг. соед., амины и др.). аминоорганоэтоксисиланы - без катализатора. Органоизопропилидeнаминоксисиланы RnSi[ON=C(CH3)2]4-n и opнaноаминосиланы RnSi(NR'R:)4-n обладают повыш. реакц. способностью при конденсации с силанолами. Конденсация силанолов с ацетокси-, алкоксисиланами и др. в присут. влаги воздуха положена в основу методов "холодной вулканизации" кремнийорг. композиц. материалов. Алкоксисиланы вступают в гетерофункцион. конденсацию с. галоген- или ацетилоксисиланами в присут. электроф. катализаторов (НСl H2SO4, FeCl3 и др.), напр.:

R3SiOR'+XSiR3:R3SiOR3+R'X

R'=CH3, C2H5; X=Cl, CH3COO Силанолы, силаноляты, алкокси- и ацилоксисиланы конденсируются также с хлоридами, алкоксидами, ацетатами металлов и неметаллов (В, Al, Ti, Sn, P и др.), напр.: 3(C2H5)3SiOH+ В(ОСН3)3:[(C,H5)3SiO]3B+ЗСН3ОН 4(CH3)3SiONa+TiCl4:[(CH3)3SiO]4Ti+4NaCl В описанных р-циях часто происходит обмен функц. групп с образованием побочных продуктов, напр.:

3R3SiOR'+(СН3СОО)3Аl:3R3SiOCOCH3+Al(OR')3

При термич. конденсации органохлорсиланов в газовой фазе или конденсации хлорсиланов с орг. соед. образуются кремнийорг. гетeроциклы, напр.:
http://www.medpulse.ru/image/encyclopedia/9/0/5/7905.jpeg
К р-циям конденсации можно отнести гидросилилирование - присоединение гидросиланов к непредельным соед., к-рое широко используется при синтезе К. с., а также при отверждении (вулканизации) кремнийорг. композиций ("р-ция полиприсоединения"), напр.:
http://www.medpulse.ru/image/encyclopedia/9/0/6/7906.jpeg
Группировки Si—О—Si в К. с. легко расщепляются протонными к-тами или к-тами Льюиса (H2SO4, HF, АlСl3, TiCl4, BF3, SiCl4), а также спиртами, алкоксисиланами, ангидридами и галогенангидридами к-т и т.д. В ряде случаев эти р-ции протекают каталитически, напр.:

(CH3)3SiOSi(CH3)3 + H24 : [(CH3)3SiO]2SO2 + Н2О;

(C2H5)3SiOSi(C2H5)3 + AlI3 : 2(C2H5)3SiI + AlOI;

[(CH3)2SiO]3 + 6C4H9OH : 3(CH3)2Si(OC4H9)2 + 3H2O;

К. с., содержащие в алкильном радикале в b-положении к атому Si электроотрицат. заместитель, подвергаются т. наз. b-распаду, напр.:

R3SiCH2CH2Cl : R3SiCl + СН2=СН2

Биологическая активность. Разработано четыре типа биологически активных К. с.: 1) структурно-специфич. К. с., не имеющие орг. аналогов (силатраны, нек-рые комплексы метилсиликоната Na с гидроксикарбоновыми к-тами, 2,6-цис-дифенилгексаметилтетрациклосилоксан; последний применяется в медицине при лечении ряда заболеваний). Нек-рые силатраны стимулируют рост растений, дрожжевых грибов, насекомых, птиц, регенерацию соединит. ткани, шерсти, волос. 2) Кремнийорг. аналоги лек. ср-в, в к-рых один или более атомов С заменены на Si. Синтезированы К. с., проявляющие гипотензивное, спазмолитич., антигистаминное, курареподобное и др. виды физиол. действия. Биологически активные К. с. этого типа обычно менее токсичны, чем их углеродные аналоги, и быстрее разрушаются в организме. 3) Биологически активные орг. соед., модифицированные введением в их молекулу кремнийсодержащих групп. Такая модификация повышает активность и пролонгирует действие антибиотиков, стероидных гормонов и др. лек. ср-в, а также инсекторепеллентов; подавляет горький вкус ряда лечебных препаратов, уменьшает побочные р-ции простагландинов и фосфорорг. инсектицидов. 4) К. с., являющиеся донорами необходимого для организма Si (эфиры ортокремниевой к-ты, алкоксисилатраны).
Методы получения. Большинство К. с. синтезируют из хлорсиланов и органохлорсиланов, получаемых, в свою очередь, из элементного Si. Для произ-ва метил-, этил- и фенилхлорсиланов в пром-сти используют т. наз. прямой синтез-р-цию Si с СН3Сl, С2Н5Сl или С6Н5Сl в присут. Сu и др. инициаторов:

Si + CH3Cl : (CH3)2SiCl2 + (CH3)3SiCl + CH3SiCl3 + + CH3HSiCl2 + (CH3)2HSiCl + (CH3)4Si

В пром. масштабе органохлорсиланы получают также термич. газофазной конденсацией SiHCl3, CH3SiHCl2 и др. с С6Н3Сl или СН2=СНСl; термокаталитич. силилированием ароматич. соед. под давлением или термич. р-цией непредельных соед. с Si2Cl6, напр.:
http://www.medpulse.ru/image/encyclopedia/9/0/7/7907.jpeg
Пром. получение К. с., содержащих группировки SiOR, SiOCOCH3, SiOH, SiOSi и пр., основано, в первую очередь, на соответствующих р-циях соед., содержащих связи Si—Сl, напр.:

R3SiCl + CH3COOH : R3SiOCOCH3 + HCl

Многие К. с. получают методами металлоорг. синтеза, используя орг. производные Mg, Li, Al, реже Na, Zn, Hg. В пром-сти магнийорг. синтез осуществляют в две стадии (получение реактива Гриньяра в среде орг. р-рителя и далее синтез К. с.) или одностадийно. В качестве кремнийсодержащего сырья используют SiCl4, Si(OC2H5)4, органохлор-, органоалкоксисиланы, напр.:

nRCl + nMg + Si(OC2H5)4 : RnSi(OC2H5)4_n + + nClMgOC2H5

Определение. Для идентификации К. с. определяют содержащийся в них Si методом эмиссионной или атомноабсорбц. спектроскопии, а также минерализацией до SiO2. Для количеств. определения содержания Si в К. с. используют метод "мокрого" (смесь H2SO4 с HNO3) или "сухого" сожжения (окисление Na2O2 под давлением). Кремний в образовавшемся SiO2 или кремниевой к-те определяют методами неорг. анализа. Для идентификации функц. групп у атома Si используют качеств. р-ции. Группу SiOH определяют по обесцвечиванию реактива Фишера или по образованию осадка кремнезема при взаимод. с SiCl4; SiCl - пo образованию осадка AgCl при взаимод. с р-ром AgNO3; SiOR - по образованию оранжевой окраски с азотнокислым р-ром церийаммонийнитрата после обработки исследуемого К. с. щелочью; SiNH2, SiNHSi, SiNR2 - пo выделению NH3 или соответствующего амина после обработки К. с. соляной к-той, а затем КОН; SiH - пo изменению окраски р-ров Cu(II) от голубой к желтой или по выделению Н2 при р-ции со спиртовой щелочью. Последняя р-ция также используется для идентификации связи Si—Si. Элементный анализ К. с. основан на их окислении при 1200-1300 °С (на новейших приборах - при 1860°С) с использованием Сr2О3.
Применение. Осн. применение мономерных К. с. - синтез кремнийорг. полимеров. Моно- и дифункциональные К. с. используют в произ-ве кремнийорганических жидкостей; дифункциональные - при получении кремнийорганических каучуков; ди-, три-, тетра- и полифункциональные - в произ-ве смол и лаков. К. с. применяют также в качестве гидрофобизаторов, антиадгезивов, аппретов для стекловолокна, текстильных и строительных материалов, наполнителей пластмасс, для модифицирования пов-стей сорбентов и др. материалов; получения покрытий для микроэлектронных устройств, спец. керамики; в качестве исходного сырья в синтезе катализаторов полимеризации олефинов, пестицидов, лек. ср-в и т.д., как сшивающие и модифицирующие агенты для разл. полимеров, в качестве теплоносителей (до 400 °С); тетраметилсилан - эталонное в-во в спектроскопии ЯМР. Токсич. действие К. с. изменяется в широких пределах (ЛД50 от 0,1 до 5000 мг/кг и выше). Так ПДК триэтоксилана 1 мг/м3, тетраэтоксисилана 20 мг/м3, а фенилтриэтоксисилан не дает острых отравлений. Наличие аминогрупп в орг. заместителях К. с. усиливает общую токсичность и раздражающее действие, напр. ЛД50 (мыши, перорально) для диэтиламинометил- и (3-аминопропил)триэтоксисилана 7500 и 250 мг/кг соответственно. Для последнего ПДК 2,5 мг/м3. Особо высокой токсичностью обладают 1-арилсилатраны (ЛД50 0,1-1 мг/кг). Мировое произ-во К. с. (без тетраэтоксисилана и этилсиликатов) в 1983 составило 300 тыс. т и, по прогнозу, к 2000 превысит 800 тыс. т. Лит.: Синтез кремнийорганических мономеров, М., 1961; Андрианов К. А., Методы элементоорганической химии. Кремний, М., 1968; Соболевский М. В., Музовская О. А., Попелева Г. С., Свойства и области применения кремнийорганических продуктов, М., 1975; Воронков М. Г., Зелчан Г. И., Лукевиц Э. Я., Кремний и жизнь, 2 изд., Рига, 1978; Хананашвили Л. М., Андрианов К. А., Технология элементоорганических мономеров и полимеров, 2 изд., М., 1983, с. 11-139, 376-400; Voorhoeve R.J.H., Organohalosilanes. Precursors to silicones, Amst. - N. Y. - L, 1967; Bazant V., Chvalovsky V., Rathousky J., Organosilicon compounds, v. 1-10, Prague, 1965-1983; Noll W., Chemk und Technologic der Silicone, 2 Аufl., Weinheim. 1968. E. А. Чернышев, А. С. Шапатин.


-капролактам Keтoальдегиды Кабачника-филдса реакция Кавитация Кадио-ходкевича реакция Кадионы Кадмий Кадмийорганические соединения Кадмия антимонид Кадмия галогениды Кадмия нитрат Кадмия оксид Кадмия селенид Кадмия сульфат Кадмия сульфид Кадмия теллурид Кадмия хлорид Казеин Каландрование полимеров Калий Калийная селитра Калийные удобрения Калифорний Калия бромид Калия гексацианоферраты Калия гидрокарбонат Калия гидроксид Калия дихромат Калия дицианоаурат(i) Калия иодид Калия карбонат Калия нитрат Калия оксид Калия перманганат Калия пероксодикарбонат Калия пероксосульфаты Калия сульфат Калия сульфиды Калия фосфаты Калия фторид Калия хлорид Калия цианат Калия цианид Калия этилксантогенат Каломель Каломельный электрод Калориметрия Кальмодулин Кальциевая селитра Кальций Кальцийорганические соединения Кальцитонин Кальциферолы Кальция алюминаты Кальция бораты Кальция вольфраматы Кальция галогениды Кальция гидроксид Кальция гипохлорит Кальция карбид Кальция карбонат Кальция нитрат Кальция оксид Кальция силикаты Кальция сульфат Кальция фосфаты Кальция фторид Кальция хлорид Кальция цианамид Каменноугольная смола Каменноугольные масла Каменные угли Камфан Камфен Камфеновые перегруппировки Камфора Канатные смазки Канифоль Канниццаро реакция Канцерогенные вещества Каолин Капельный анализ Капиллярная конденсация Капиллярная хроматография Капиллярные явления Капиллярный осмос Каплеулавливание Каприловая кислота Капрон Капроновая кислота Капсаицин Капсулирование Каптакс Карбазол Карбамид Карбамидные смолы Карбаминовая кислота Карбанионы Карбеновые комплексы переходных металлов Карбены Карбиды Карбиламины Карбин Карбиновые комплексы переходных металлов Карбитолы Карбкатионы Карбодиимиды Карбодифосфораны Карбоксилатные каучуки Карбоксилирование Карбоксиметилцеллюлоза Карбоксипептидазы Карбоксиэстеразы Карболины Карбонаты неорганические Карбонаты органические Карбонаты природные Карбонизация Карбонилирование Карбонилфторид Карбонилы металлов Карбонильные соединения Карбония ионы Карбоновые кислоты Карбопласты Карборансодержащие полимеры Карбораны Карборунд Карбоциклические соединения Карвон Кардовые полимеры Карены Кариофиллен Кариуса метод Каркасные соединения Карнаубский воск Карнитин Карнозин Каротиноиды Каррагинаны Касторовое масло Катаболизм Катализ Катализаторы Катализаторы гидрирования Катализаторы дегидрирования Катализаторы окисления Катализаторы полимеризации Каталитический крекинг Каталитический реформинг Каталитических реакций кинетика Катапины Катенаны Катепсины Катехоламины Катион-радикалы Катиониты Катионная полимеризация Катионные красители Катионообменные смолы Катионотропные перегруппировки Катионы Катодная защита Катодолюминесцентный микроанализ Каустобиолиты Каучук натуральный Каучуки синтетические Качественный анализ Квадрупольный момент Квазикристалл Квазирацематы Квазистационарности приближение Квантовая механика Квантовая химия Квантовое состояние Квантовые переходы Квантовый выход Кварц Кварцевое стекло Квасцы Кверцетин Кедровое масло Керамика Кератины Кермель Керметы Керосин Керра эффект Кетали Кетены Кетимины Кетокарбoновые кислoты Кетокислоты Кетон малины Кетоны Кибернетика Кижнера реакция Кижнера-вольфа реакция Килиани-фишера реакция Кинe-замещeние Кинетика химическая Кинетическая кривая Кинетическая теория газов Кинетические методы анализа Кинетический изотопный эффект Кинетическое уравнение Кинины Киноплёнки Кипение Кипреналь Кипящий слой Кирсанова реакция Кирхгофа уравнение Кислoтно-оснoвное титрование Кислoтно-основнoй катализ Кислород Кислорода фториды Кислородный индекс Кислотное число Кислотные красители Кислотоупoрные прирoдные материалы Кислоты и основания Кислоты неорганические Клeя-киннера-пeррена реакция Клайзена конденсация Клайзена перегруппировка Клайзена-шмидта реакция Клапейрона-клаузиуса уравнение Клапейрона-менделеева уравнение Кларки химических элементов Классификация Классификация гидравлическая Кластеры Клатраты Клеевые краски Клеи природные Клеи синтетические Клей Клей неорганические Клемменсена реакция Клетки эффект Клешневидные соединения Клофелин Клофибрат Кнорра реакция Кнёвенагеля реакция Коагулянты Коагуляция Коалесценция Коацервация Кобальта ацетат Кобальта галогениды Кобальта гидроксиды Кобальта карбонаты Кобальта карбонилы Кобальта нитраты Кобальта оксиды Кобальта сплавы Кобальта сульфаты Кобальта хлориды Кобальтовые удобрения Кобальторганические соединения Кобамидные коферменты Ковалентная связь Ковалентные кристаллы Ковалентные радиусы Ковар Когезия Кодеин Кодон Кожа Кожа искусственная Койевая кислота Кокаин Кокосовое масло Кокс каменноугольный Кокс нефтяной Кокс пековый Коксование Коксовое число Коксохимия Коксуемость углей Колебательные реакции Колебательные спектры Количественный анализ Коллoидные раствoры Коллаген Коллидины Коллоидная химия Коллоидные системы Коллоксилин Колориметрический анализ Колхициновые алкалоиды Кольбе реакции Кольбе шмитта реакция Кольрауша закон Комбинационного рассеяния спектроскопия Компаунды полимерные Компенсационный эффект Комплексные соединения Комплексометрия Комплексонометрия Комплексоны Комплексообразующие ионообменные смолы Комплемент Комплементарность Композиты Композиционные материалы Компонент системы Компрессорные масла Компрессорные машины Компьютерный синтез Конго красный Кондакова реакция Конденсации реакции Конденсация Конденсация фракционная Кондуктометрия Конкурирующих реакций метод Коновалова законы Коновалова реакция Конопляное масло Консервационные масла Консервационные смазки Консистентные смазки Константа равновесия Константа скорости Константан Конструкционная керамика Контакт петрова Контактная очистка Конфигурационного взаимодействия метод Конфигурация стереохимическая Конформации молекулы Конформационные эффекты Конформационный анализ Концентрация Концентрирование Координата реакции Координациoнно-иoнная полимеризация Координационная связь Координационное число Координационные полимеры Координационные полиэдры Координационные соединения Копалы Кордиты Коричный альдегид Коричный спирт Кормовые фосфаты Корреляционные соотношения Корреляция конфигураций Корриноиды Коррозионная усталость Коррозионностойкие материалы Коррозионные испытания Коррозия металлов Коррозия под напряжением Кортикоиды Коршун климовой метод Космические смазки Космохимия Котельные топлива Коттона эффект Кофеин Кофермент Коферменты Коха-хаафа реакция Коэрцитивная сила Крапплак Красители природные Красители синтетические Краски Красуского правило Кратные связи Краун-эфиры Крахмал Крашение бумаги Крашение волокон Крашение древесины Крашение кожи Крашение меха Крашение оксидированного алюминия Крашение пластических масс Крашение резино-технических изделий Креатинфосфорная кислота Кребса цикл Крезолы Крекинг Кремнефтористоводородная кислота Кремниевые кислоты Кремний Кремнийорганические жидкости Кремнийорганические каучуки Кремнийорганические лаки Кремнийорганические полимеры Кремнийорганические соединения Кремнийэлементоорганические соединения Кремния диоксид Кремния иодиды Кремния карбид Кремния нитрид Кремния оксид Кремния фториды Кремния хлориды Криоскопия Криохимия Криптанды Криптон Криптона дифторид Кристаллизационные методы разделения смесей Кристаллизация Кристаллическая структура Кристаллический фиолетовый Кристаллического поля теория Кристаллическое состояние Кристаллическое состояние полимеров Кристаллогидраты Кристаллосольваты Кристаллофосфоры Кристаллохимия Кристаллы Критические явления Критическое состояние Кровезаменители Кроны Кротоновая кислота Кротоновая конденсация Кротоновый альдегид Круговой дихроизм Крёнке реакция Ксаитемовые красители Ксантин Ксантинола никотинат Ксантогенаты Ксантопротеиновая реакция Ксантотоксин Ксенон Ксенона фториды Ксиленоловый оранжевый Ксилидины Ксилилендиамины Ксилит Ксилолы Кубовые красители Кубогены Кубозоли Кукурузное масло Кулонометрия Кумарин Кумароно-инденовые смолы Кумилгидропероксид Кумилпероксид Кумол Кумулены Кунжутное масло Купманса теорема Купферон Курареподобные средства Курарин Курнакова соединения Курциуса реакция Курчатовий Кучерова реакция Кьельдаля метод Кэмпса реакция Кэрролла-каймела реакция Кюри точка Кюрий Кёнигса-кнорра реакция