Словарь научных терминов
Качественный анализ
КАЧЕСТВЕННЫЙ АНАЛИЗ, идентификация (обнаружение) компонентов анализируемых в-в и приблизительная количеств, оценка их содержания в в-вах и материалах. В качестве компонентов м. б. атомы и ионы, изотопы элементов и отдельные нуклиды, молекулы, функц. группы и радикалы, фазы (см. Элементный анализ, Изотопный анализ. Молекулярный анализ. Органических веществ анализ, Фазовый анализ). Первоначально К. а. возник как вид органолептич. восприятия продуктов потребления и произ-ва для оценки их качества. В первую очередь это относилось к лек. в-вам, для анализа к-рых был разработан т. наз. мокрый путь, т. е. анализ жидкостей и р-ров. С переходом к произ-ву и применению металлов возник пробирный анализ, первоначально как К. а. для определения подлинности благородных металлов. В дальнейшем он стал методом приближенного количеств, анализа. Одновременно развивались разл. варианты пирохим. К. а. для определения цветных металлов, железа, а также для анализа содержащих металлы минералов и руд. Качеств. аналит. сигналом при этом служили внеш. вид королька восстановленного металла, окраска конденсатов выделяющихся летучих продуктов, образование характерно окрашенных стекол ("перлов") при сплавлении анализируемых в-в с содой, бурой или селитрой. В основу анализа орг. соед. еще А. Лавуазье положил процессы сожжения с образованием СО2 и Н2О. Далее этот метод был развит др. учеными на основе тех же пирохим. процессов и газового анализа, причем К. а. тесно слился с количественным. После открытия изомерии в К. а. было включено изучение хим. структуры орг. соединений. Классический орг. анализ - родоначальник микрохим. методов анализа и автоматич. анализаторов. Параллельно с хим. методами К. а. развивались и чисто физические - от метода установления хим. состава бинарного сплава путем измерения уд. веса (метод Архимеда) до спектроскопии, измерения эдс, поверхностного натяжения р-ров и т. д. С сер. 20 в. значение физ. методов К. а. неизмеримо возросло. Качеств. и количеств, анализы развивались в тесном взаимод., т. к. только при уточнении количеств. данных возможна полная расшифровка качеств. компонентного состава в-ва, а на основе данных К. а. - совершенствование количеств. анализа. При этом К. а. строится на основе возрастающей дифференциации св-в компонентов, а количественный - на возможности воспринимать и дифференцировать аналит. сигналы миним. интенсивности. Хим. методы элементного анализа неорг. соединений. Основаны на ионных р-циях и позволяют обнаруживать элементы в форме катионов и анионов. Для К. а. катионов используют разл. схемы систематич. анализа с последоват. разделением катионов на группы и подгруппы, внутри к-рых возможна идентификация отдельных элементов. Аналит. группы обычно именуют по групповому реагенту.
1. Группа соляной к-ты; в нее входят Ag, Hg(I), Pb, Tl(I), к-рые образуют хлориды, малорастворимые в воде и кислых р-рах, а также W, Nb, Та, образующие в этих же условиях малорастворимые гидраты оксидов.
2. Группа гидразина; в нее входят Pd, Pt, Au, Se, Те, к-рые восстанавливаются в кислом р-ре; при отсутствии благородных металлов эта группа опускается, a Se и Те переходят в следующую.
3. Группа сероводорода. Подразделяют на три подгруппы: а) меди - Сu, Pb, Hg(II), Bi, Cd; образуют сульфиды, нерастворимые в полисульфиде аммония (NH4)2Sn; б) мышьяка - As, Sb, Sn; образуют тиосоли, р-римые в (NH4)2Sn; в) более редких элементов - Ge, Se, Те, Mo; образуют сульфиды, р-римые в (МН4)2Sn:
4. Группа (NH4)2S - уротропина, элементы к-рой образуют сульфиды или гидроксиды, малорастворимые в аммиачном р-ре (NH4)2S. Подразделяют условно на три подгруппы: а) элементы со степенью окисления +2-Со, Ni, Mn, Zn; б) элементы со степенью окисления + 3 - Fe, A1, Сr; в) др. элементы - Be, Ga, In, Sc, Y, La, Th, U, Ti, Zr, Hf, Nb, Та (при наличии катионов этой подгруппы предварительно отделяют элементы с высокими степенями окисления обработкой уротропином в слабокислой среде). К этой группе относят также V, W, образующие первоначально р-римые тиосоли, разрушающиеся при подкислении.
5. Группа (NH4)2CO3; в нее входят Са, Sr, Ba, к-рые образуют карбонаты, малорастворимые в аммиачной среде, и не образуют осадков с описанными групповыми реагентами.
6. Группа р-римых соед., не образующих осадков со всеми указанными групповыми реагентами, - Li, Na, К, Mg, Rb, Cs. В учебных курсах нумерацию групп часто обращают, начиная ее с группы р-римых соединений. Недостатки описанной схемы: плохое отделение Zn2+ от Cd2+, неточное разделение Sn2+, Рb2+, соосаждение нек-рых сульфидов четвертой группы (Fe и Zn) с CuS, окисление сульфидов в р-римые сульфаты и др., а также высокая токсичность H2S. Имеются бессероводородные методы систематич. К. а. К ним относятся методы с применением заменителей H2S, дающих ион S2- в водных р-рах (тиомочевина, тиоацетамид, тиосульфат), и наиб, распространенные методы без иона S2-: кислотно-щелочной, аммиачно-фосфатный, гидразин-гидроксиламиновый, фторидно-бензоатный и др. Напр., в кислотно-щелочном методе катионы разделяют на группы малорастворимых хлоридов или сульфатов, амфотерных гидроксидов, нерастворимых в щелочах гидроксидов, амминокомплексов, растворимых в воде солей. Полные схемы систематич. К. а. осуществляются редко. Обычно их используют частично в соответствии с конкретным набором ионов, для разделения ионов металлов в количеств. анализе, а также в учебных курсах аналит. химии. К. а. смесей неметаллов (исключая анализ орг. в-в) осуществляют путем идентификации анионов в водных и водно-орг. средах. Анионы не имеют общеустановленного разделения на группы, число к-рых значительно варьирует в разных схемах анализа. Обычно анионы классифицируют по признаку растворимости солей (табл. 1) и по признаку окислит.-восстановит. активности (табл. 2). Групповые

http://www.medpulse.ru/image/encyclopedia/3/5/3/7353.jpeg

реагенты в анализе анионов служат только для их обнаружения (в отличие от катионов, где такие реактивы служат и для разделения). Для отделения катионов, мешающих обнаружению анионов, анализируемый р-р предварительно обрабатывают 1 М р-ром соды для осаждения карбонатов, гидроксокарбонатов и гидроксидов тяжелых металлов (на карбонат-ион, возможно имеющийся в пробе, проводят предварит. испытание). При наличии в анализируемом в-ве ионов, для к-рых существуют селективные реагенты, их обнаружение проводят из исходного р-ра с помощью характерных индивидуальных

http://www.medpulse.ru/image/encyclopedia/3/5/4/7354.jpeg

р-ций (дробный метод). При этом обычно сначала изолируют мешающие компоненты осаждением или маскированием, а затем специфич. р-цией идентифицируют искомый ион. Основой для создания дробного анализа послужило получение большого набора реагентов органических на ионы неорг. в-в, а также разработка техники капельного анализа. Разработан дробный метод полного К. а. катионов и анионов. Техника проведения К. а. развивается в направлении отказа от макрометодов и перехода к полумикро- (100-10 мг), микро- (10-0,1 мг) и ультрамикрометодам (менее 0,1 мг). Полумикроанализ широко применяют в учебной работе; микро- и ультрамикроанализ - при исследовании биол. объектов, а также в электронной технике, особенно полупроводниковой, и радиохимии. Количеств, характеристика методик К. а. - предел обнаружения, т.е. миним. кол-во искомого компонента (в мкг или нг), к-рое м. б. надежно идентифицировано: для р-ров используется величина предельной концентрации Сx, min или обратная ей величина предельного разбавления Dх (предельный объем р-ра, к-рый приходится на 1 мкг определяемого компонента). Предел обнаружения и Сх, min связаны друг с другом выражением:

http://www.medpulse.ru/image/encyclopedia/3/5/5/7355.jpeg

Иногда пользуются величиной pDx=-lgDx; для большинства микрохим. р-ций К. a. pDx = 4-6. Хим. методы К. а. орг. соединений. В составе орг. сосд. обычно идентифицируют С, Н, О, N, S, Р, галогены и др. Углерод - по СО2, образующемуся после сжигания пробы в раскаленной трубке в присут. СuО; водород - по Н2О, конденсирующейся на холодных участках трубки, или по H2S, к-рый образуется после прокаливания пробы с безводными Na2SO3 и Na,S2O3 и обнаруживается бумагой, пропитанной р-ром (СН3СОО)2Рb или нитропруссида натрия. Азот, серу и галогены определяют после разложения в-ва расплавленным К или Na в открытых или запаянных стеклянных трубках по качеств, р-циям в р-ре на образующиеся KCN (или NaCN), сульфиды, тиоцианаты, цианаты и галогениды; одновременно определяют наличие углерода по остатку на фильтре. Кислород обычно идентифицируют по функц. группам (карбонильной, альдегидной и др.); для прямого обнаружения пробу нагревают в токе N2 или Н2 в присут. платинового катализатора и идентифицируют по СО2 и Н2О. Фосфор обнаруживают по р-ции с (МН4)2МоО4, а мышьяк-по р-ции с H2S после оглавления исследуемого в-ва с содой или селитрой и обработки остатка НСl. Металлы идентифицируют в зольном остатке после сожжения пробы. Ряд специфич. и чувствительных р-ций для элементного анализа орг. соед. предложен в системе капельного анализа с помощью цветных р-ций. Приборами для одновременного качеств, и количеств, элементного анализа служат автоматич. анализаторы типов CHN, CHNS, ClBrICHNS, к-рые снабжены специфич. сорбционными или серийными хроматографич. устройствами для разделения продуктов разложения и детекторами для их идентификации. Важный метод исследования орг. соед.-функциональный К. а., т. е. обнаружение атомов или групп атомов, определяющих строение данного класса орг. соед. и их конкретные св-ва. Хим. методы К. а. имеют практич. значение при необходимости обнаружения только неск. элементов. Для многоэлементного К. а. применяют физ.-хим. методы, такие как хроматография, электрохим. методы, в осн. полярография, и др. и физические методы, напр, атомно-эмиссионную спектрометрию (см. Спектральный анализ)(предел обнаружения 1 мкг на 1 г твердой пробы или 1 мл р-ра), атомно-абсорбционный анализ (предел обнаружения порядка пикограммов), рентгеноэмиссионный и рентгенофлуоресцентный анализ (см. Рентгеновская спектроскопия)(миним. анализируемый объем 1 мкм3, предел обнаружения 10-2-10-3% по массе). Молекулярный и функциональный К. а. проводят с помощью инфракрасной спектроскопии, комбинационного рассеяния спектроскопии, ядерного магнитного резонанса, электронного парамагнитного резонанса. Особое место в совр. К. а. занимает масс-спектрометрия и хромато-масс-спектрометрия (ниж. предел обнаружения - 10-7% по массе). В основе фазового К. а. лежат процессы выделения отдельных фаз из сплава или руды и установление их состава хим. или физ.-хим. методами. Наиб. значение имеет рентгеновский фазовый анализ и термогравиметрия (особенно при анализе минералов). К. а. и полуколич. анализ фаз в гетерофазной системе возможно также осуществить на шлифе образца посредством электронного микрозонда. Для анализа нуклидов используют активационный анализ. В совр. неорг. К. а. ведущая роль принадлежит физ. методам, к-рые позволяют решать задачи идентификации и установления строения хим. соед., определения их локализации в объекте, установления типа хим. связи между атомами и группами атомов; в орг. К. а. хим. и физ. методы используются комплексно. Лит.: Губен-Вейль, Методы органической химии, т. 2 - Методы анализа, 2 изд., М., 1967; Мурашова В. И., Тананаева А.Н., Ховякова Р.Ф., Качественный химический дробный анализ, М., 1976; Ляликов Ю.С., Клячко Ю.А., Теоретические основы современного качественного анализа, М., 1978; Гельман Н. Э.. Кипаренко Л. М., Автоматический элементный анализ органических соединений, "Ж. Всес. хим. об-ва им. Д.И. Менделеева", 1980, т. 25, №6, с. 641-51; Идентификация органических соединений, пер. с англ., М., 1983, с. 100-15: Иоффе Б. В., Костиков Р. Р., Разин В. В., Физические методы определения строения органических соединений, М., 1984; М азор Л.. Методы органического анализа, пер. с англ., М., 1986. Ю.А.Клячко.


-капролактам Keтoальдегиды Кабачника-филдса реакция Кавитация Кадио-ходкевича реакция Кадионы Кадмий Кадмийорганические соединения Кадмия антимонид Кадмия галогениды Кадмия нитрат Кадмия оксид Кадмия селенид Кадмия сульфат Кадмия сульфид Кадмия теллурид Кадмия хлорид Казеин Каландрование полимеров Калий Калийная селитра Калийные удобрения Калифорний Калия бромид Калия гексацианоферраты Калия гидрокарбонат Калия гидроксид Калия дихромат Калия дицианоаурат(i) Калия иодид Калия карбонат Калия нитрат Калия оксид Калия перманганат Калия пероксодикарбонат Калия пероксосульфаты Калия сульфат Калия сульфиды Калия фосфаты Калия фторид Калия хлорид Калия цианат Калия цианид Калия этилксантогенат Каломель Каломельный электрод Калориметрия Кальмодулин Кальциевая селитра Кальций Кальцийорганические соединения Кальцитонин Кальциферолы Кальция алюминаты Кальция бораты Кальция вольфраматы Кальция галогениды Кальция гидроксид Кальция гипохлорит Кальция карбид Кальция карбонат Кальция нитрат Кальция оксид Кальция силикаты Кальция сульфат Кальция фосфаты Кальция фторид Кальция хлорид Кальция цианамид Каменноугольная смола Каменноугольные масла Каменные угли Камфан Камфен Камфеновые перегруппировки Камфора Канатные смазки Канифоль Канниццаро реакция Канцерогенные вещества Каолин Капельный анализ Капиллярная конденсация Капиллярная хроматография Капиллярные явления Капиллярный осмос Каплеулавливание Каприловая кислота Капрон Капроновая кислота Капсаицин Капсулирование Каптакс Карбазол Карбамид Карбамидные смолы Карбаминовая кислота Карбанионы Карбеновые комплексы переходных металлов Карбены Карбиды Карбиламины Карбин Карбиновые комплексы переходных металлов Карбитолы Карбкатионы Карбодиимиды Карбодифосфораны Карбоксилатные каучуки Карбоксилирование Карбоксиметилцеллюлоза Карбоксипептидазы Карбоксиэстеразы Карболины Карбонаты неорганические Карбонаты органические Карбонаты природные Карбонизация Карбонилирование Карбонилфторид Карбонилы металлов Карбонильные соединения Карбония ионы Карбоновые кислоты Карбопласты Карборансодержащие полимеры Карбораны Карборунд Карбоциклические соединения Карвон Кардовые полимеры Карены Кариофиллен Кариуса метод Каркасные соединения Карнаубский воск Карнитин Карнозин Каротиноиды Каррагинаны Касторовое масло Катаболизм Катализ Катализаторы Катализаторы гидрирования Катализаторы дегидрирования Катализаторы окисления Катализаторы полимеризации Каталитический крекинг Каталитический реформинг Каталитических реакций кинетика Катапины Катенаны Катепсины Катехоламины Катион-радикалы Катиониты Катионная полимеризация Катионные красители Катионообменные смолы Катионотропные перегруппировки Катионы Катодная защита Катодолюминесцентный микроанализ Каустобиолиты Каучук натуральный Каучуки синтетические Качественный анализ Квадрупольный момент Квазикристалл Квазирацематы Квазистационарности приближение Квантовая механика Квантовая химия Квантовое состояние Квантовые переходы Квантовый выход Кварц Кварцевое стекло Квасцы Кверцетин Кедровое масло Керамика Кератины Кермель Керметы Керосин Керра эффект Кетали Кетены Кетимины Кетокарбoновые кислoты Кетокислоты Кетон малины Кетоны Кибернетика Кижнера реакция Кижнера-вольфа реакция Килиани-фишера реакция Кинe-замещeние Кинетика химическая Кинетическая кривая Кинетическая теория газов Кинетические методы анализа Кинетический изотопный эффект Кинетическое уравнение Кинины Киноплёнки Кипение Кипреналь Кипящий слой Кирсанова реакция Кирхгофа уравнение Кислoтно-оснoвное титрование Кислoтно-основнoй катализ Кислород Кислорода фториды Кислородный индекс Кислотное число Кислотные красители Кислотоупoрные прирoдные материалы Кислоты и основания Кислоты неорганические Клeя-киннера-пeррена реакция Клайзена конденсация Клайзена перегруппировка Клайзена-шмидта реакция Клапейрона-клаузиуса уравнение Клапейрона-менделеева уравнение Кларки химических элементов Классификация Классификация гидравлическая Кластеры Клатраты Клеевые краски Клеи природные Клеи синтетические Клей Клей неорганические Клемменсена реакция Клетки эффект Клешневидные соединения Клофелин Клофибрат Кнорра реакция Кнёвенагеля реакция Коагулянты Коагуляция Коалесценция Коацервация Кобальта ацетат Кобальта галогениды Кобальта гидроксиды Кобальта карбонаты Кобальта карбонилы Кобальта нитраты Кобальта оксиды Кобальта сплавы Кобальта сульфаты Кобальта хлориды Кобальтовые удобрения Кобальторганические соединения Кобамидные коферменты Ковалентная связь Ковалентные кристаллы Ковалентные радиусы Ковар Когезия Кодеин Кодон Кожа Кожа искусственная Койевая кислота Кокаин Кокосовое масло Кокс каменноугольный Кокс нефтяной Кокс пековый Коксование Коксовое число Коксохимия Коксуемость углей Колебательные реакции Колебательные спектры Количественный анализ Коллoидные раствoры Коллаген Коллидины Коллоидная химия Коллоидные системы Коллоксилин Колориметрический анализ Колхициновые алкалоиды Кольбе реакции Кольбе шмитта реакция Кольрауша закон Комбинационного рассеяния спектроскопия Компаунды полимерные Компенсационный эффект Комплексные соединения Комплексометрия Комплексонометрия Комплексоны Комплексообразующие ионообменные смолы Комплемент Комплементарность Композиты Композиционные материалы Компонент системы Компрессорные масла Компрессорные машины Компьютерный синтез Конго красный Кондакова реакция Конденсации реакции Конденсация Конденсация фракционная Кондуктометрия Конкурирующих реакций метод Коновалова законы Коновалова реакция Конопляное масло Консервационные масла Консервационные смазки Консистентные смазки Константа равновесия Константа скорости Константан Конструкционная керамика Контакт петрова Контактная очистка Конфигурационного взаимодействия метод Конфигурация стереохимическая Конформации молекулы Конформационные эффекты Конформационный анализ Концентрация Концентрирование Координата реакции Координациoнно-иoнная полимеризация Координационная связь Координационное число Координационные полимеры Координационные полиэдры Координационные соединения Копалы Кордиты Коричный альдегид Коричный спирт Кормовые фосфаты Корреляционные соотношения Корреляция конфигураций Корриноиды Коррозионная усталость Коррозионностойкие материалы Коррозионные испытания Коррозия металлов Коррозия под напряжением Кортикоиды Коршун климовой метод Космические смазки Космохимия Котельные топлива Коттона эффект Кофеин Кофермент Коферменты Коха-хаафа реакция Коэрцитивная сила Крапплак Красители природные Красители синтетические Краски Красуского правило Кратные связи Краун-эфиры Крахмал Крашение бумаги Крашение волокон Крашение древесины Крашение кожи Крашение меха Крашение оксидированного алюминия Крашение пластических масс Крашение резино-технических изделий Креатинфосфорная кислота Кребса цикл Крезолы Крекинг Кремнефтористоводородная кислота Кремниевые кислоты Кремний Кремнийорганические жидкости Кремнийорганические каучуки Кремнийорганические лаки Кремнийорганические полимеры Кремнийорганические соединения Кремнийэлементоорганические соединения Кремния диоксид Кремния иодиды Кремния карбид Кремния нитрид Кремния оксид Кремния фториды Кремния хлориды Криоскопия Криохимия Криптанды Криптон Криптона дифторид Кристаллизационные методы разделения смесей Кристаллизация Кристаллическая структура Кристаллический фиолетовый Кристаллического поля теория Кристаллическое состояние Кристаллическое состояние полимеров Кристаллогидраты Кристаллосольваты Кристаллофосфоры Кристаллохимия Кристаллы Критические явления Критическое состояние Кровезаменители Кроны Кротоновая кислота Кротоновая конденсация Кротоновый альдегид Круговой дихроизм Крёнке реакция Ксаитемовые красители Ксантин Ксантинола никотинат Ксантогенаты Ксантопротеиновая реакция Ксантотоксин Ксенон Ксенона фториды Ксиленоловый оранжевый Ксилидины Ксилилендиамины Ксилит Ксилолы Кубовые красители Кубогены Кубозоли Кукурузное масло Кулонометрия Кумарин Кумароно-инденовые смолы Кумилгидропероксид Кумилпероксид Кумол Кумулены Кунжутное масло Купманса теорема Купферон Курареподобные средства Курарин Курнакова соединения Курциуса реакция Курчатовий Кучерова реакция Кьельдаля метод Кэмпса реакция Кэрролла-каймела реакция Кюри точка Кюрий Кёнигса-кнорра реакция
www.medpulse.ru: Мозг вянет без солнца и не любит суеты
27.09.2009
… - это, конечно, универсальное устройство. Но оно способно качественно анализировать только одну задачу. Не перегружайте его, потому что иногда это опасно для здоровья. Например, разговор по мобильному за рулем может стать причиной …