Словарь научных терминов

Интерметаллиды

ИНТЕРМЕТАЛЛИДЫ (от лат. inter - между и металл) (интерметаллич. соединения), хим. соед. двух или неск. металлов между собой. Относятся к металлическим соединениям, или металлидам. И. образуются в результате взаимод. компонентов при сплавлении, конденсации из пара, а также при р-циях в твердом состоянии вследствие взаимной диффузии (при химико-термич. обработке), при распаде пересыщенного твердого раствора одного металла в другом, в результате интенсивной пластич. деформации при мех. сплавлении (механоактивации). Для И. характерны преим. металлич. тип хим. связи и специфич. металлич. св-ва. Однако среди И. имеются также солеобразные соед. с ионной связью (т. наз. валентные соед., образующиеся из элементов разл. хим. природы и представляющие собой стехиометрич. соед.), напр. NaAu, соед. с промежут. характером связи - ионно-металлич. и ковалентно-металлической, а также с ковалентной. Так, в ряду соед. Mg с элементами подгруппы IVa вместе с уменьшением различия в электрохим. характеристиках компонентов наблюдается и изменение св-в И. - от характерных для ионных соед. (Mg2Si, Mg2Ge) к св-вам, типичным для металлов (Mg2Pb). В соед. структурного типа NiAs (рис. 1) или родственных типов Ni2In, NiTe2 или CdI2, представляющих собой соед. переходных металлов подгрупп VIIб, VIIIб и металлов подгруппы Сu с элементами подгрупп IIIa-VIa (т. наз. никель-арсенидные фазы, или фазы Макарова), сложная природа хим. связи, к-рая изменяется с изменением положения компонентов в периодич. системе; одновременно изменяется и состав И. Для соед. состава АВ характерна ковалентно-металлич. связь; при изменении состава И. от АВ2 (напр., NiTe2) до А2В (напр., Ni2In) наблюдается изменение природы связи - от преобладающей ионно-ковалентной до металлической.
221_240-71.jpg
Среди двойных И. наиб. распространены соед. Курнакова, фазы Лавеса, фазы Юм-Розери (электронные соед.), s-фазы, s-подобные фазы. Известны и нек-рые др. И. Особенно многочисленными являются соед. Курнакова (сверхструктуры, упорядоченные твердые р-ры), характеризующиеся упорядоченным расположением атомов компонентов (атомы каждого из металлов занимают в кристаллич. решетке И. строго определенное положение, создавая как бы неск. вставленных одна в другую подрешеток). Сверхструктуры по сравнению с неупорядоченными твердыми р-рами того же состава часто имеют большие (в 2-3 раза) размеры элементарных ячеек, а также добавочные дифракц. линии на рентгенограммах. Соед. Курнакова имеют составы АВ, А2В, А3В и т.д., однако в силу металлич. характера связи эти фазы могут обладать широкими областями гомогенности. В нек-рых сплавах упорядоченное расположение атомов компонентов возникает уже при кристаллизации, но в большинстве случаев упорядочение происходит в твердом состоянии ниже определенной т-ры, наз. точкой Курнакова. Фазы Лавеса - соед. состава АВ2 (реже АВ) - образуются обычно при определенном соотношении атомных радиусов компонентов rА/rВ и обладают узкими областями гомогенности. При взаимод. металлов подгруппы Iб, а также нек-рых переходных с металлами подгрупп IIIa, IVa, IIб-Vб при условии достаточно малого различия в величинах атомных радиусов компонентов образуются фазы Юм-Розери, часто наз. также электронными соединениями. s-Фазы образуют переходные металлы гл. обр. подгрупп Vб, VIб с металлами подгрупп VIIб, VIIIб также при условии достаточно малого различия в величинах их атомных радиусов (эти И. иногда наз. электронными соед. переходных металлов). s-Подобные фазы, напр., m-, c-, Р-фазы, сходны по кристаллич. структуре с s-фазами, но все же имеют небольшие отличия. Состав большинства И. не отвечает простым атомным соотношениям компонентов, т.к. обычно эти соотношения определяются структурным типом и наличием упорядоченного расположения атомов компонентов. Упорядоченные структуры характерны для многих b-фаз Юм-Розери, фаз Лавеса и родственных им соед. (напр., SmCo5), для фаз структурного типа Cr3Si, m-фаз (напр., Fе7Мо6), нек-рых s-фаз. Многие И., напр., e-фазы Юм-Розери, фаза s-FeCr, являются неупорядоченными.
Кристаллическая структура. Классификация И. по кристаллич. структурным типам плохо коррелирует с типами хим. связи, т. к. одни и те же структуры м. б. у соед. с разл. природой хим. связи. Можно лишь выделить структуры с низкими координац. числами (к. ч.), характерные для И. с ковалентной связью. При этом атомы элемента из подгрупп б периодич. системы в структуре типа СаF2 расположены внутри тетраэдра (к. ч. = 4, напр., PtAl2, AuIn2), а в структуре типа NiAs - в центре тригональной призмы (к. ч. = 6). Структуры ионных и металлич. кристаллов можно рассматривать как плотные упаковки сферич. частиц (см. Плотная упаковка). Благодаря плотной упаковке одни и те же структурные типы характерны для кристаллов с ионным и металлич. типом связи. Главный параметр, определяющий возникновение того или иного структурного типа для ионных и металлич. кристаллов, - отношение соотв. ионных и металлич. радиусов компонентов. Ограничение числа реализующихся структурных типов для И. связано с тем, что диапазон изменений металлич. атомных радиусов существенно уже, чем диапазон изменений радиусов катионов и анионов в ионных соединениях. Вместе с тем среди И., как и среди металлов, имеются специфич. кристаллич. структуры. Предложенный Л. Полингом метод описания структуры ионных кристаллов с помощью координац. полиэдров используют и для описания структур И. Напр., легко устанавливается родственность И. трех структурных типов фаз Лавеса (усеченные тетраэдры) MgCu2, MgZn2 и MgNi2 (рис. 2). В основе наиб. общей систематики структурных типов И. (П. И. Крипякевич, 1963) лежат координац. характеристики атома меньшего размера. Всего выделено 14 классов (или семейств) структурных типов, главные из них указаны в табл. 1.
221_240-72.jpg
Рис. 2. Структура фаз Лавеса: a - MgCu2. Атомы Mg образуют подрешетку со структурой типа алмаза. Атомы Сu расположены в пустотах (порах) этой подрешетки, образуя тетраэдры (показаны крупной штриховкой); центры этих тетраэдров совпадают с центрами тетраэдрич. пор подрешетки атомов Mg. Соединения вершин соседних тетраэдров также образуют тетраэдр (показан мелкой штриховкой); это позволяет представить расположение атомов непрерывной вязью тетраэдров по всему кристаллу, что справедливо для всех типов фаз Лавеса; б - полиэдр Лавеса - усеченный тетраэдр; в, г, д - изображения структурных типов фаз Лавеса в полиэдрах соотв. MgCu2, MgZn2, MgNi2.

К числу наиб. распространенных относятся И., имеющие структуры, близкие к структурам чистых металлов, - плотнейшие кубич. гранецентрированную и гексагональную (к. ч. = 12), а также кубич. объемноцентрированную (к. ч. = 8 + 6, где 8 и 6 - число атомов соотв. в первой и второй координац. сферах). Координац. многогранники для плотнейших упаковок шаров одинакового размера - кубооктаэдр и его гексагон. аналог (рис. 3, а, б) - характерны для И., компоненты к-рых имеют близкие атомные радиусы. Кроме соед. со структурами типов Сu и Mg к данному классу принадлежат семейства сверхструктур (напр., AuCu, AuCu3, Pt7Cu), а также структурные типы Ni3Sn, TiCu3 и др. К. ч. = 8 + 6 соответствует координац. многогранник в виде куба (8 соседей у центр. атома), атомы второй координац. сферы располагаются в вершинах октаэдра. К этому классу относятся структурные типы a-Fe, сверхструктуры на основе решетки типа a-Fe (напр., b-латунь или CuZn, Fe3Al).
https://www.medpulse.ru/image/encyclopedia/0/4/7/7047.jpeg
Др. подход к систематике кристаллич. структур металлов и их сплавов основан на выявлении наиб. характерных плотных и плоских (или почти плоских) сеток и последовательностей их укладки (У. Пирсон, 1972).
https://www.medpulse.ru/image/encyclopedia/0/4/8/7048.jpeg
Рис. 3. Наиб. распространенные координац. многогранники для интерметаллидов: а - кубооктаэдр, к. ч. = 12 (гранецентрир. кубич. структура); б - гексагональный аналог кубооктаэдра, к. ч. = 12 (гексагон. плотноупакованная структура); в - куб, к. ч. = 8, и октаэдр, к. ч. = 6 (объемноцентрированная кубич. структура). Атом в центре координац. многогранника показан черным кружком, атомы в вершинах - светлыми, принадлежат первой координац. сфере (а, б) или первой и второй (в).

Примерно половина всех известных структурных типов металлич. и полупроводниковых соед. описываются укладкой правильных атомных треугольных (36), гексагональных (63) сеток, сеток кагомэ (3636) и сеток (32434), содержащих квадраты (рис. 4; в обозначениях сеток большие цифры указывают форму ячейки, напр. 3 - треугольная, 4 - квадрат и т.д., цифры в верх. индексах - число таких ячеек, окружающих узел сетки).
https://www.medpulse.ru/image/encyclopedia/0/4/9/7049.jpeg
Рис. 4. Структуры интерметаллидов, изображенные атомными сетками.

Известные решетки металлов - гексагональная плотноупакованная и кубич. гранецентрированная - представляют собой двух- (ABA...) и трехслойные (АВСА...) упаковки треугольных сеток 36; в структурах соед. сетки содержат атомы разного сорта с упорядоченным или неупорядоченным расположением, м. б. искаженными и иметь пятиугольные ячейки. В качестве примера на рис. 5 представлена структура s-фазы, показанная сетками.
https://www.medpulse.ru/image/encyclopedia/0/5/0/7050.jpeg
Рис. 5. Структура s-фазы; представлена двумя сетками кагоме, повернутыми одна по отношению к другой на 90°; атомы, находящиеся между этими сетками, обозначены черными кружками.

Несмотря на удобство описания мн. структур с помощью плоских атомных сеток, следует учитывать трехмерный характер координации атомов в структурах кристаллов И. Одним из главных принципов структурообразования для этих кристаллов следует считать предложенный Ф. Лавесом в 1967 принцип наиб. полного заполнения пространства, к-рое обеспечивается или плотнейшей упаковкой сфер при одинаковом радиусе компонентов (к. ч. = 12; поры, или пустоты, между атомами имеют конфигурацию тетраэдров и октаэдров), или идеальной упаковкой неск. искаженных тетраэдров (характеризуется только одним типом пор - тетраэдрическим).
https://www.medpulse.ru/image/encyclopedia/0/5/1/7051.jpeg
Рис. 6. Координац. многогранники Каспера - Франка; показаны проекциями атомов на плоскость чертежа; атомы, находящиеся на разных уровнях по отношению к центральному, изображены разл. способами.

Дж. Каспер и Ф. Франк в 1958 нашли 4 типа сложенных из тетраэдров выпуклых многогранников с треугольными гранями, имеющих 12, 14, 15 и 16 вершин (рис. 6). Эти многогранники (как взаимопроникающие) описывают сложные атомные структуры нек-рых металлич. элементов (напр., a-Mn) и ряда И. (напр., s-фаз). Для большинства И., описываемых многогранниками Каспера -Франка, характерно небольшое различие атомных радиусов. В др. случаях, напр., для фаз Лавеса, условия плотной упаковки требуют обязательного и существ. различия величин атомных радиусов компонентов И. Состав и структура И. зависят от электроотрицательности компонентов, числа валентных электронов, величин атомных (металлич. или ковалентных) или ионных радиусов (в зависимости от преобладающего типа хим. связи), т.е. в целом от положения компонентов в периодич. системе. Главный фактор, определяющий состав и строение фаз Юм-Розери, - электронная концентрация nэл, равная отношению числа валентных электронов к числу атомов в решетке И. (табл. 2). Структуры этих И. повторяют характерные структуры металлов. Для двойных И. установлены след. типы электронных соед.: в области значений пэл ок. 3/2 образуются b-фазы Юм-Розери структурных типов b-латуни, CsCl, b-Mn, Mg; ок. nэл = 21/13 - g-фазы со структурой типа g-латуни; ок. пзл = 7/4 - e-фазы структурного типа e-латуни. Значения nэл соответствуют границам области гомогенности (для компонента в более высокой степени окисления) данной фазы. Др. случай проявления ограничивающего действия фактора электронной концентрации известен для трехкомпонентных систем, напр., для MgCu2 -MgAl2, когда замещение меди алюминием приводит к последовательной смене структурных типов от MgCu2 (nэл = 1,33-1,73) к MgNi2 (nэл= 1,81-1,95) и к MgZn2 (nэл = 1,98-2,05).
https://www.medpulse.ru/image/encyclopedia/0/5/2/7052.jpeg
Ограничивающее действие фактора электронной концентрации сказывается при образовании s-фаз, возникающих в сплавах металлов подгрупп Vб-VIIб с металлами подгруппы VIIIб. s-Фазы имеют частично или полностью упорядоченное расположение атомов в решетке типа b-U и отличаются одинаковой электронной концентрацией (ns+d = 6,7-7,2, где ns+d - отношение суммы s- и d-электронов к числу атомов в решетке). Состав s-фазы в системе V-Fe близок к АВ3 (17-28% V), в системе V-Ni - к А2В (55-65 ат.% V). В двух- и особенно в трехкомпонентных системах фактор электронной концентрации проявляется в определенной последовательности смены s- и s-подобных фаз (s : Р : m : R : c) с изменением состава. Во всех рассмотренных случаях сопоставляются структуры с одинаковыми или близкими координацией и компактностью кристаллич. решетки (типичные металлич. структуры в случае фаз Юм-Розери, одинаковая координация в случае s-подобных фаз). При сравнении ряда структур с существенно разл. координациями и компактностью должен быть др. подход к количеств. оценке фактора электронной концентрации. В случае И., образуемых элементами подгрупп б, удалось установить (В. Ф. Дегтярева, Ю. А. Скаков, 1976) связь последовательности смены структур (в одной или в разных системах) с изменением состава при определении электронной концентрации как отношения числа валентных электронов к единице объема (табл. 3). Необходимость такого способа выражения электронной концентрации обусловлена тем, что в отличие от ряда фаз Юм-Розери в ряду соед. металлов подгрупп б сильно изменяются компактность решеток и к. ч. В случае др. И. электронный фактор может не оказывать ограничивающего действия на концентрац. область существования И., т.к. ограничивающим становится др. фактор -геометрический (или размерный) rА/rВ, - требующий определенного соотношения числа атомов компонентов в связи с особой ролью атомного упорядочения, напр. соед. Ni4Mo, или в связи с тем, что позиции, занимаемые атомами в кристаллич. решетке, не равноценны, напр., фазы Лавеса АВ2.
https://www.medpulse.ru/image/encyclopedia/0/5/3/7053.jpeg
Эти фазы (структурные типы MgCu2 - кубич., MgNi2 - гексагон. и MgZn2 - гексагон.) возникают при взаимод. металлов практически всех групп периодич. системы при условии, что соотношение атомных радиусов компонентов rА/rВ ~ 1,22 (практически для табличных значений радиусов rА/rВ ~ 1,10-1,40). Ограничивающее действие фактора электронной концентрации проявляется в том, что нек-рые элементы вообще не образуют фаз Лавеса, напр., переходные элементы в системах состава АВ2 при ns+d [ 7,7. При анализе возможности образования того или иного И. исходят не из конкретных значений геом. факторов и эффективных атомных радиусов, а из табличных для к. ч. = 12; в случае переходных металлов следует иметь в виду, что их атомные радиусы сравнительно мало изменяются в пределах одного периода, поскольку при переходе от элемента к элементу достраиваются внутр. электронные оболочки. Благодаря эффекту лантаноидного сжатия малы различия атомных радиусов элементов 5-го и 6-го периодов, 24 элемента имеют атомные радиусы в пределах 0,125-0,160 нм, и различия между ними составляют 10% и менее. Влияние геом. фактора на состав и структуру И. наблюдается при переходе от фаз Лавеса АВ2 к соед. АВ5 (или АВn). Если в соед. АВ2 один из атомов А (имеет больший радиус) из каждых двух формульных единиц в ячейке кристаллич. решетки замещается атомом В, возникают И. состава АВ5, напр. АuВе5 (структурный тип MgCu2) или СаСu5 (структурный тип MgZn2). Дальнейшее замещение в структуре типа СаСu5 1/3 или 1/2 атомов А парами менее крупных атомов приводит к структурным типам Th2Ni17 и ThMn12; при этом чем больше отношение rА/rВ, тем больше п в ф-ле АВn. Ряд таких И. образуется в системе Co-Sm и в др. подобных системах, содержащих РЗЭ. При взаимод. Ti, Sc, Hf, Zr с переходными элементами VIII гр.- Ni, Co, Pd, Rh, Pt - возникают фазы А2В, близкие по структуре к т. наз. карбиду быстрорежущей стали Fe3W3C (кубич. структура, 96 атомов в ячейке); геом. фактор rА/rВ ~ 1,20 (к. ч. = 12), однако на образование этих фаз оказывает ограничивающее действие и фактор электронной концентрации, чем объясняется отсутствие двойных фаз с участием Fe. С этим же фактором, вероятно, надо связывать появление таких фаз в ряде систем при наличии кислорода, азота или углерода, к-рые выступают как стабилизаторы (подобно фазам внедрения). В тройных системах образуются И., имеющие как отличия, так и сходства в структурных типах с двойными И. Напр., Сu2АlМn по структурному типу (кубич. сингония, 16 атомов в ячейке) близок к Fe3Al; элементарная ячейка кристаллич. решетки s-подобной Р-фазы в трехкомпонентном сплаве Cr18Mo42Ni40 (ромбич. сингония, 56 атомов в ячейке) м. б. описана как сдвоенная по оси с ячейка решетки s-фазы. Вместе с тем добавление третьего (или четвертого) компонента в систему часто приводит к появлению новых, не существовавших в данной двойной системе И. в связи с действием фактора электронной концентрации (напр., образование а-фазы в системе Cr-Ni при добавлении 8-15% Si). Найден особый тип И., в к-рых отсутствует трансляционная симметрия кристалла, поскольку существует ось симметрии 5-го порядка. Эти соед. наз. квазикристаллич. (см. Квазикристалл), или икосаэдрическими. Впервые такое соед. было получено как метастабильная фаза в системе Аl-Мn при содержании ок. 16 ат.% Мn в условиях закалки из жидкого состояния. Для ряда сплавов в области концентраций, где образуются И., в условиях большой скорости охлаждения расплава получают метастабильные аморфные фазы, или металлич. стекла (напр., в системах Cu-Zr, Ni-Ti). Аморфные И. возможно получить также при конденсации из пара, сильной деформацией смеси порошков, при ионной имплантации или путем радиац. воздействия на И.
Свойства. Физ. и хим. св-ва И. в гораздо большей степени, чем кристаллич. структура, зависят от природы хим. связи. Ионные И. обладают св-вами, характерными для солей, -высокой т-рой плавления, пониженной (по сравнению с металлической) электрич. проводимостью, наличием на диаграммах состояния узких областей гомогенности и др., многие разлагаются водой. Для И. с преобладающей металлич. связью характерны св-ва металлов, прежде всего более или менее значит. способность к пластич. деформации. Все же мн. И. отличаются низкой пластичностью и сообщают повыш. хрупкость сплавам, в к-рых они являются одной из структурных составляющих (напр., фаза s-FeCr в хромистых сталях) или основой (напр., SmCo5 в сплаве для постоянных магнитов). Благодаря особенностям кристаллич. и электронной структур И. в них происходит как бы оптимизация важных в практич. отношении физ. св-в (высокая т-ра плавления и низкая диффузионная подвижность компонентов в жаропрочных сплавах, магнитокристаллич. анизотропия и высокая коэрцитивная сила в сплавах для постоянных магнитов, нулевая магнитострикция и высокая магн. проницаемость в магнитно-мягких сплавах, сверхпроводимость, напр., в сплавах Nb3Sn, Nb3Al и др.). Св-вами полупроводников обладают, как правило, соед. металлов с неметаллами. В связи с использованием И. для получения высокопрочных сплавов, в т.ч. коррозионно- и жаростойких, жаропрочных, важны хим. св-ва И., особенно их отношение к окислению. При окислении тугоплавких И. при низких т-рах в связи с малой подвижностью атомов в решетках могут образовываться как простые оксиды, так и сложные (напр., Nb2O5.Al2O3 при окислении NbAl3), они м. б. кристаллич., аморфными или метастабильной кристаллич. структуры. Образование поверхностных оксидных пленок повышает сопротивляемость И. к окислению. Наиб. стойки к окислению при повыш. т-рах (выше 1000 °С) алюминиды и бериллиды. Ряд И., в частности И. щелочных и щел.-зем. металлов и нек-рые соед. Аl, разлагаются в присут. влаги. Скорость разложения легкоплавких И. возрастает в ходе р-ции (20-40 ч); MgCu2, MgZn2, Al3Mg2, CuAl2 влагой не разлагаются. Характер взаимод. И. с Н2 зависит от реакц. способности компонентов по отношению к водороду. Если все компоненты И. являются активными гидридообразователями, происходит диссоциация И. с образованием индивидуальных гидридов, насыщение водородом может привести к аморфизации И. В др. случаях возникают сложные гидриды как фазы на основе И. (см. Гидриды). Это определяется не только особенностями кристаллич. структуры (напр., наличием мест внедрения), но и особенностями электронной структуры компонентов и самого И. (наличием электронных вакансий). Такими особенностями обладают фазы Лавеса, а также родственные им фазы с участием переходных металлов, прежде всего РЗЭ.
Применение. Нек-рые И. используют как магн. материалы (SmCo5, Fe3Ni, Cu2MnAl и др.), сверхпроводники (Nb3Sn и др.), аккумуляторы Н2 (соед. РЗЭ, РЗЭ и Mg, напр. LaNi5, CeMg12). И. входят в состав высокопрочных конструкц. материалов (напр., обеспечивают высокую прочность в дисперсионно-твердеющих сплавах на основе Al, Cu, Fe и др.), жаропрочных сплавов [напр., g'-Ni3 (Al, Ti) в сплавах на основе Ni создает высокодисперсную микроструктуру, сохраняющую высокую прочность в условиях длительной работы при повыш. т-рах]. На основе И. созданы защитные покрытия из тугоплавких металлов (Ni3Al, Ni3Nb, Ti3Al и др.). Фазовое превращ. TiNi (кубич. D ромбич. фаза) обусловливает специфич. св-во этого материала - "память формы"; TiNi используют для изготовления термочувствит. элементов и преобразователей тепловой энергии в механическую. Лит.: Белов Н. В., Структура ионных кристаллов и металлических фаз, М., 1947; Крипякевич П. И., "Ж. структурн. химии". 1963. т. 4, № 1, с. 117-36; там же, № 2, с. 282-99; Теслюк М. Ю., Металлические соединения со структурами фаз Лавеса, М., 1969; Интерметаллическис соединения, сб. под ред. И. И. Корнилова, пер. с англ., М., 1970; Дегтярева В. Ф., Скаков Ю. А., "Кристаллография", 1976, т. 21, в. 2, с. 405-07; Пирсон У. Б., Кристаллохимия и физика металлов и сплавов, ч. 1-2, пер. с англ., М., 1977; Уманский Я. С., Скаков Ю. А., Физика металлов (Атомное строение металлов и сплавов), М., 1978; Смитлз К. Дж., Металлы. Справочник. 5 изд., пер. с англ., М., 1980; Николин Б. И., Многослойные структуры и политинизм в металлических сплавах, К., 1984. Ю. А. Скаков.


Иванова реакция Игданит Идеальный газ Идентификация Изатин Изафенин Избирательность анализа Известковые удобрения Известняк Известь Измельчение Изо.. Изоmeризat Изоамилацетат Изоамиловый спирт Изобутилен Изобутиловый спирт Изовалериановая кислота Изовалериановый альдегид Изоиндол Изоксазол Изолейцин Изолированная система Изолобальной аналогии принцип Изоляционные масла Изомасляный альдегид Изомеразы Изомеризация Изомерия Изомерия атомных ядер Изоморфизм Изоникотиновая кислота Изонитрилы Изонитрильные комплексы переходных металлов Изопрен Изопреновые каучуки синтетические Изопреноиды Изопропаноламины Изопропилбензол Изопропиловый спирт Изотактические полимеры Изотахофорез Изотиазол Изотиоцианаты Изотопного разбавления метод Изотопные генераторы Изотопные индикаторы Изотопные эффекты Изотопный анализ Изотопный обмен Изотопов разделение Изотопы Изоферменты Изофталевая кислота Изофталоилхлорид Изохинолин Изохинолиновые алкалоиды Изоцианаты Изоцианаты блокированные Изоцинхомероновая кислота Изоцитрат-лиаза Изоэвгенол Изоэлектрическая точка Изумрудная зелень Илиды Имид-амидная перегруппировка Имидазол Имидазолины Имидофосфаты Имиды карболовых кислот Имиды металлов Имизин Иминиевые соли Иминоксильные радикалы Иминоэфиры Иммерсионные жидкости Иммобилизованные ферменты Иммуномодулирующие средства Иммунохимия Импедансный метод Импульсный радиолиз Импульсный фотолиз Ингибиторы Ингибиторы коррозии Индазол Индамины Индан Индандионы Индантрон Инден Индиго Индигоидные красители Индигокармин Индий Индикаторная бумага Индикаторные трубки Индикаторы Индия антимонид Индия арсенид Индия галогениды Индия оксиды Индия фосфид Индоанилины Индоксан Индол Индольные алкалоиды Индофенолы Индуктивный эффект Индукция химическая Индулины Индустриальные масла Инженерная энзимология Инициаторы радикальные Инициирование Инициирующие взрывчатые вещества Инкапаситанты Инозин Инозиты Инсектициды Инсулин Интенсивные параметры Интеркалаты Интерлейкины Интермедиат Интерметаллиды Интерфероны Инулин Инфразвуковые аппараты Инфракрасная спектроскопия Иод Иодбензол Иодиды Иодное число Иодные удобрения Иодозобензол Иодометрия Ион-молекулярные комплексы Ион-радикалы Ион-циклотронный резонанс Ионизации потенциал Ионизирующие излучения Иониты Ионная атмосфера Ионная имплантация Ионная полимеризация Ионная хроматография Ионно-молекулярные реакции Ионного рассеяния спектроскопия Ионные кристаллы Ионные пары Ионные радиусы Ионный выход Ионный микроанализ Ионный обмен Ионол Иономеры Ионометрия Иононы Ионообменная хроматография Ионообменные смолы Ионоселективные электроды Ионофоры Ионы Ионы в газах Иоцича реакция Иприт Ипсо-замещение Иридий Иридийорганические соединения Ирисаль Ирританты Искусственная пища Искусственные волокна Искусственный интеллект Испарение Итаконовая кислота Иттербий Иттрий Ихтиоциды Июпак