Словарь научных терминов
Грохочение

ГРОХОЧЕНИЕ, разделение сыпучих материалов на фракции по размеру или крупности частиц (кусков) просеиванием на грохотах (ситах). Г.-распространенный технол. процесс в хим. пром-сти, применяемый в сочетании с дроблением (см. Измельчение), а также как самостоят. операция (см. Сепарация воздушная). Работа грохота в замкнутом цикле с дробилкой или мельницей обеспечивает повышение их производительности, снижение энергозатрат и получение продукта необходимого кач-ва.

Разделение материала происходит при его движении относительно рабочей пов-сти грохота (колосниковые решетки, перфорированные металлич. листы-решета, сетки). При этом материал расслаивается-мелкие фракции постепенно проходят сквозь крупные и проваливаются через калибров, отверстия определенных размеров в рабочей пов-сти, более крупные частицы остаются на рабочей пов-сти и удаляются с нее (т. наз. надрешетный продукт-обозначается цифрой, указывающей размер отверстия со знаком "плюс", напр. + 50 мм); продукт, прошедший через отверстия, наз. подрешетным и обозначается цифрой со знаком "минус". Для уменьшения износа рабочей пов-сти Г. проводят чаще всего через набор сит с последовательно уменьшающимися отверстиями. По размеру частиц продукта различают крупное (300-100 мм), среднее (100-25 мм), мелкое (25-5 мм) и тонкое (5-0,5 мм) Г.

Осн. характеристики Г.: т. наз. граница разделения фракций, определяемая размером отверстий в ситах; остатки материала на ситах (см. Ситовой анализ)после Г.; производительность грохота по исходному материалу и готовому продукту; эффективность-отношение массы подрешетного продукта к массе фракции той же крупности в исходном материале. Показатель кач-ва Г.-т. наз. засоренность 3, характеризующая содержание (%) в продукте посторонних фракцийhttp://www.medpulse.ru/image/encyclopedia/0/1/0/6010.jpeg где А0 и А0'-массы пробы соотв. до и после отсева посторонних фракций.

Г. может быть сухим (т.е. происходить в среде воздуха или инертного газа) либо мокрым (материал подается на грохот вместе с водой или др. жидкостью). наиб. распространено сухое Г., поскольку в большинстве процессов используется обезвоженный продукт. Однако для материалов с повыш. влажностью или содержащих комкующие примеси значительно эффективнее, если это допускается технол. режимом и экономически целесообразно, мокрое Г., к-рое позволяет одновременно промывать материал и предотвращать пылевыделение.

Различают след. виды грохотов: неподвижные (напр., колосниковые); с движением отдельных элементов рабочей пов-сти (напр., с эластичным ситом); подвижные с колебательным (напр., вибрационные, или инерционные), вращательным (напр., барабанные) или волнообразным (напр., спец. инерционные) движением рабочей пов-сти; с перемещением материала в струе пульпы. По форме рабочей пов-сти грохоты подразделяют на плоские, дуговые, барабанные, многогранные призматические (напр., т. наз. бураты), по расположению-на горизонтальные и наклонные, по числу сит-на одно-, двух- и многоситовые. Преим. применение имеют грохоты с колебательным движением: инерционные со своб. колебаниями-вибрационные, резонансные (частота возмущающих колебаний кратна частоте собственных колебаний системы), самобалансные (см. ниже); гирационные (эксцентриковые) с вынужденными колебаниями короба, сообщаемыми ему через жесткую кинематич. связь. Резонансные грохоты сложны по конструкции, гирационные вызывают сильную вибрацию опор, к-рая передается перекрытиям зданий; поэтому указанные типы грохотов постепенно вытесняются более совершенными.
http://www.medpulse.ru/image/encyclopedia/0/1/1/6011.jpeg

Рис. 1. Наклонный инерц. грохот с мех. вибратором: 1-электродвигатель; 2-шкивы с дебаланса.ми; 3-вал с подшипниками; 4 -короб; 5 - рабочая пов-сть (напр., решето); 6-упругая опора; 7-опорная плита.

В хим. технологии, напр. в произ-вах минер. удобрении и хим. ср-в защиты растений, особенно широко используют высокопроизводительные инерц. грохоты с мех. вибратором, или виброгрохоты (рис. 1). Они просты по конструкции, обеспечивают четкое разделение материалов (в т. ч. склонных к налипанию), удобны в эксплуатации. Корпус грохота в виде горизонтального или наклонного (угол наклона обычно 3-15°) прямоугольного короба с ситом опирается на плиту через упругие связи (напр., металлич. пружины или пневматич. шины). Вибратор-вал со шкивами, несущими дебалансы (инерц. неуравновешенные грузы), к-рый установлен в подшипниках и приводится в движение через соединительную муфту непосредственно от электродвигателя или через мех. передачу. При вращении дебалансного вала возникают центробежные силы инерции, сообщающие коробу с ситом колебания (напр., с частотой 600 мин-1 и амплитудой 5 мм). Достоинства виброгрохотов: при высокой частоте колебаний сит отверстия их почти не забиваются материалом; высокая производительность и точность Г.; пригодность для Г. разнообразных материалов (в т.ч. влажных и глинистых); компактность, легкость регулирования и смены сит; меньший расход энергии, чем для грохотов др. типов.

Возбудителями колебаний могут служить также электромагниты, через обмотки к-рых пропускают перем. ток. Однако из-за огранич. площади рабочей пов-сти электрови-брогрохоты значительно менее распространены. Осн. типы мех. грохотов-наклонные с колебаниями короба по круговой или эллиптич. траектории. Серийно выпускаются легкие, средние и тяжелые виброгрохоты для материалов с насыпной плотностью, меньшей или равной соотв. 1,2; 1,6; 2,5 т/м3.

Создана и все шире применяется более совершенная разновидность инерц. грохотов. В них возвратно-поступательные колебания короба (при к-рых Г. наиб. эффективно) генерируются двумя дебалансными валами, вращающимися в противоположные стороны. Для обеспечения нормальной работы грохота частоты вращения валов должны быть одинаковы и синхронизированы по фазе. Это достигается с помощью мех. устройства, включающего, напр., шестерни или зубчатые ремни. Однако из-за наличия мех. передачи неизбежны износ движущихся частей и шум при работе грохота. Указанные недостатки устранены в грохотах, действие к-рых основано на открытом в СССР т. наз. эффекте самосинхронизации вращения обоих кинематических, не связанных между собой дебалансных валов, закрепленных в бортовых стенках короба, к-рый вибрирует под заданным углом к рабочей пов-сти грохота. Применяют одно-, двух-и многоситовые грохоты. Пример-многоситовый грохот (рис. 2) со значительно большими углами наклона рабочей пов-сти, чем в др. конструкциях; имеет высокую производительность, компактен, благодаря электроподогреву рабочей пов-сти до 50 °С м. б. использован для Г. влажных материалов. Самосинхронизирующиеся грохоты получают все большее распространение, поскольку позволяют обеспечить лучшие условия труда, резкое снижение объема ремонтных работ и простоев оборудования.
http://www.medpulse.ru/image/encyclopedia/0/1/2/6012.jpeg

Рис. 2. Многоситовый самосинхронизирующийся грохот: 1 -короб; 2-сита; 3-вибровозбудитель; 4-упругая опора.

Увеличение угла наклона рабочей пов-сти (до 25-34° и более), а также частот колебаний грохотов (в ряде случаев центробежное ускорение в 7 раз превышает ускорение своб. падения), реализуемое в новых конструкциях грохотов, особенно актуально для мелкого и тонкого Г., поскольку приводит к повышению его эффективности.

В нек-рых конструкциях наклонных инерц. грохотов, в отличие от традиционных, по длине рабочей пов-сти создается неоднородное вибрац. поле. Это облегчает отделение мелочи в зоне загрузки и просев в зоне выгрузки грохота. При разделении влажных и склонных к налипанию материалов наряду с подогревом рабочей пов-сти грохота сообщают волнообразное движение, что вызывает в ней циклич. упругие деформации и способствует лучшей очистке от остатков материала. С целью снижения износа и за-биваемости сит используют инерц. грохоты с эластичной деформируемой рабочей пов-стью из полимерных материалов, напр. с резиновым ситом, выполненным из продольных нитей (диам. 3-6 мм при зазоре между ними до 8 мм), опирающихся на поперечные гребенчатые планки. Одновременно с развитием инерц. наклонных грохотов возрастает применение горизонтальных. Последние подвергаются мех. колебаниям по эллиптич. траектории и отличаются большой скоростью перемещения материала по рабочей пов-сти и соотв. высокой производительностью.

Лит.. АндреевС. Е., Перов В. А., Звере ви ч В. В., Дробление, измельчение и грохочение полезных ископаемых, 3 изд., М., 1980; Справочник по обогащению руд. Подготовительные процессы, 2 изд., М., 1982. М.Л. Моргулис.


N-галогенимиды Габриеля реакция Гадолинии Газгольдеры Газификация нефтяных остатков Газификация твердых топлив подземная Газификация твёрдых топлив Газо-жидкостная хроматография Газоадсорбционная хроматография (гах) Газоанализаторы Газов осушка Газов очистка Газов разделение Газов увлажнение Газовая коррозия Газовая постоянная Газовая хроматография Газовые гидраты Газовые конденсаты Газовый анализ Газойль Газопроницаемость Газотурбинные масла Газотурбинные топлива Газофазная полимеризация Газы Газы нефтепереработки Газы нефтяные попутные Галактуроновая кислота Галлий Галлийорганические соединения Галлия антимонид Галлия арсенид Галлия галогениды Галлия оксиды Галлия фосфид Галловая кислота Галогенальдегиды и галогенкетоны Галогенангидриды карбоновыхкислот Галогенантрахиноны Галогениды Галогенирование Галогеноспирты Галогентионфосфаты Галогенфосфаты Галогенфосфины Галогенфосфиты Галогенцианиды Галогены Галохромия Галургия Гальвани-потенциал Гальванопластика Гальваностегия Гальванотехника Ганглиоблокирующиесредства Ганглиозиды Гапто Гастрин Гафний Гваякол Гей-люссака законы Гексаметапол Гексаметилендиамин Гексаметилендиизоцианат Гексаметиленимин Гексаметилентетрамин Гексан с6н14 Гексанитробензол Гексафторацетилацетон Гексафторацетон Гексафторбензол Гексафтордифенилолпропан Гексафторпропилен Гексафторпропиленоксид Гексахлор-1,3-циклопентадиен Гексахлорбензол Гексахлорксилолы Гексахлорциклогексан Гексахлорэтан Гексен Гексенал Гексил Гексоген Гексозы Гексокиназа Гели Гелий Гелиотропин Гелля -фольгарда -зелинского реакция Гельмгольца энергия Гем.. Гемицеллюлозы Гемоглобин Гемоцианины Ген Генетическая инженерия Генетический код Геном Генри закон Геометрические изомеры Геохимические классификации элементов Геохимические методы поисков полезных ископаемых Геохимические процессы Геохимия Гепарин Гептан Гептаналь Гераниол Гербе реакция Гербициды Германий Германийорганические соединения Германия оксиды Герметики Гесса закон Гестагены Гетероароматические соединения Гетерогенная система Гетерогенные реакции Гетерогенный катализ Гетеролитические реакции Гетерополисоединения Гетероциклические соединения Гетинакс Геттеры Гиацинт аль Гиббереллины Гиббса правило фаз Гиббса энергия Гиббса-дюгема уравнение Гибкие производства Гибридизация атомных орбиталей Гибридные методы анализа Гидантоин Гидр азиды карбоновых кислот Гидравлические жидкости Гидравлический транспорт Гидразиды арилсульфокислот Гидразин Гидразина замещенные органические Гидразоны Гидразосоединения Гидратация Гидратированный электрон Гидратроповый альдегид Гидратцеллюлозные волокна Гидраты Гидрдзильные радикалы Гидрид-ион Гидриды Гидрирование Гидрирования число Гидрогалогенирование Гидрогенизация жиров Гидрогенизация угля Гидрогенолиз Гидродеалкилирование Гидродеароматизация Гидродоочистка Гидрокортизон Гидрокрекинг Гидроксамовые кислоты Гидроксид-анион Гидроксиды Гидроксил Гидроксиламин Гидроксиламина производные органические Гидроксильное число Гидроксицитронеллаль Гидроксокомплексы Гидроксоний-ион Гидролазы Гидролиз Гидролизные производства Гидрометаллургия Гидромеханические процессы Гидрообессеривание Гидроочистка Гидропероксиды органические Гидросилилирование Гидросфера Гидротермальные процессы Гидротропы Гидрофильно-липофильный баланс Гидрофильность Гидрофобное взаимодействие Гидроформилирование Гидроформинг Гидрофосфорильные соединения Гидрофториды металлов Гидрохимия Гидрохинон Гидроцианирование Гиллеспи теория Гипероксиды Гиполипидемические средства Гипотензивные средства Гипофосфиты неорганические Гипофосфиты органические Гипохлориты Гипс Гипсохромный сдвиг Гистамин Гистидин Гистоны Гистохимия Глазурь Глиадины Гликоген Гликозиды Гликозиды сердечные Гликозилдиглицериды Гликозилтрансферазы Гликолевая кислота Гликоли Гликолиз Гликолипиды Гликопротеины Гликосфинголипиды Глимы Глины Глиоксаль Глиоксилатный цикл Глицеральдегидфосфатдегидрогеназа Глицериды Глицерин Глицериновый альдегид Глицидальдегид Глицидилметакрилат Глицидные эфиры Глицидол Глутаматдегидрогеназа Глутаматсинтаза Глутамин Глутаминовая кислота Глутаминсинтетаза Глутатион Глутатионредуктаза Глутатионтрансферазы Глюкагон Глюкоза Глюконеогенез Гольмий Гомберга - бахмана - хёя реакция Гомогенная система Гомогенные реакции Гомогенный катализ Гомолитические реакции Гомологизация Гомологический ряд Гомотопия Гонадолиберин Горение Гормоны Гормоны тимуса Горнохимическое сырьё Горчичное масло Горючесть Горючие сланцы Горячие атомы Гофмана - лёфлера реакция Гофмана реакции Гравиметрия Гравитационная постоянная Градирни Гракаускаса реакция Гранаты синтетические Граничных орбиталей теория Гранулирование Гранулиты Графит Графита соединения Графитопласты Графов теория Гремучая ртуть Гремучий студень Гризеофульвин Гриньяра реакция Гротгуса-дрейпера закон Грохочение Грунтовки Гуанамино-формальдегидные смолы Гуанидин Гуанин Гуанозин Гуанозинтетрафосфат Гудрон Гука закон Гуминовые кислоты Гуттаперча Кристаллы висмута