Словарь научных терминов
Гранулирование

ГРАНУЛИРОВАНИЕ (грануляция) (от лат. granulum-зернышко), формирование твердых частиц (гранул) определенных размеров и формы с заданными св-вами. Размер гранул зависит от вида материала, способа его дальнейшей переработки или применения и составляет обычно (мм): для минер. удобрений 1-4, термопластов 2-5, реактопла-стов 0,2-1,0, каучуков и резиновых смесей 15-25 и более, лек. препаратов (таблеток) 3-25. Формирование гранул размером менее 1 мм иногда наз. микрогранулированием.

Г. может быть основано на уплотнении порошкообразных материалов (с использованием связующих или без них), диспергировании и послед. кристаллизации расплавов или р-ров либо на измельчении крупных кусков в дробилках.

Осн. показатели эффективности Г.-выход товарной (кондиционной) фракции, кач-во получаемых гранул (форма, прочность, насыпная масса), однородность гранулометрич. состава (см. Ситовой анализ). Процесс можно осуществлять с возвратом мелких частиц на стадию гранулообразования (ретурное Г.) либо без него (безретурное). По первой схеме гранулируют удобрения, по второй-полимеры и лек. препараты. Отношение кол-ва ретура к выходу товарной фракции наз. ретурностью. Этот показатель, напр. для Г. удобрений методом скатывания (см. ниже), может изменяться от 0,3 до 10-15.

Придание в-вам формы гранул улучшает условия их хранения и транспортировки, позволяет механизировать и автоматизировать процессы послед. использования продуктов, повышает производительность и улучшает условия труда, снижает потери сырья и готовой продукции. Ниже рассмотрены важнейшие методы Г.

Окатывание включает след. стадии: смачивание частиц материала связующим (водой, сульфит-спиртовой бардой, смесями с водой извести, глин, шлаков и др. вяжущих материалов), в результате чего образуются отдельные комочки-агломераты частиц и (или) происходит наслаивание мелких частиц на более крупные; уплотнение агломератов в слое материала. Процесс осуществляют в барабанных, тарельчатых, скоростных и вибрац. грануляторах.

Принцип действия барабанного (рис. 1) и тарельчатого (рис. 2) грануляторов основан на вращении соотв. барабана, установленного горизонтально или под углом 1-3° (частота вращения 5-20 мин -1), и спец. тарели, размещенной под углом 45-55° (частота вращения 5-50 мин-1), внутри к-рых перемещается слой материала. Степень заполнения им аппаратов может изменяться от 10 до 15%. Окатывание в барабанном грануляторе происходит на боковой цилиндрич. пов-сти, в тарельчатом - в осн. на пов-сти днища тарели.
http://www.medpulse.ru/image/encyclopedia/9/5/0/5950.jpeg

Рис. 1. Барабанный гранулятор.
http://www.medpulse.ru/image/encyclopedia/9/5/1/5951.jpeg

Рис. 2. Тарельчатый гранулятор (слева показана траектория движения частицы материала при вращении тарели).
http://www.medpulse.ru/image/encyclopedia/9/5/2/5952.jpeg

Рис. 3. Скоростной гранулятор.
http://www.medpulse.ru/image/encyclopedia/9/5/3/5953.jpeg

Рис. 4. Гранулятор с псевдо-ожиженным слоем.

Для интенсификации окатывания применяют скоростные и вибрац. грануляторы, в к-рых получают более плотные и однородные по размерам гранулы. В скоростном грануляторе (рис. 3) слой материала сильно перемешивается посредством шнека (частота вращения 1000-2500 мин-1)и вала с насаженными на него штырями или пластинами. Корпус вибрац. гранулятора - горизонтальный прямоугольный или трапециевидный короб - крепится спец. пружинами к опорной плите и с помощью вибратора подвергается мех. колебаниям (частота 5-50 Гц, амплитуда 2-5 мм), благодаря к-рым материал хорошо перемешивается и уплотняется.

Метод скатывания используют для Г. удобрений, железорудных концентратов и др. продуктов массового произ-ва.

Диспергирование жидкостей осуществляется в своб. объем или на пов-сть твердых частиц с послед. охлаждением капель расплава воздухом, водой, маслом и т.д. или кристаллизацией тонких пленок жидкости на пов-сти твердых частиц при сушке. Метод применяют для Г. расплавов удобрений в полых башнях, а также для Г. с использованием р-ров, суспензий и пульп в барабанных грануляторах-сушилках (аппаратах БГС) и аппаратах с псевдоожиженным слоем. При Г. распыливанием жидкости на пов-сти частиц, напр. в аппарате с псевдоожиженным слоем (рис. 4), тонкие пленки жидкости наслаиваются на центры гранулообразования в зоне взаимод. факела распыла с частицами взвешенного слоя. Гранулы растут вследствие кристаллизации пленок. Диспергирование используют также для покрытия таблеток и гранул разл. оболочками.

Прессование- получение гранул в форме брикетов, плиток, таблеток путем уплотнения сухих порошков, иногда с послед. дроблением спрессованного материала. Для Г. фосфатных шлаков и нек-рых видов удобрений применяют валковые и вальцевые прессы (рис. 5), лек. препаратов и витаминов - таблеточные машины (см. Таблетирование), реактопластов - зубчатые роторные грануляторы, вальцы и спец. экструдеры. Для непрерывной подачи порошка и его предварит. уплотнения используют подпрессовыватель (спиралевидный шнек). Особенность Г. на валках и вальцах - выдавливание из порошка в зоне деформации воздуха и его фильтрация сквозь слой поступающего в эту зону материала. В данном случае скорость процесса, определяющая производительность пресса, лимитируется той величиной, при к-рой порошок переходит в зоне деформации во взвешенное состояние.
http://www.medpulse.ru/image/encyclopedia/9/5/4/5954.jpeg

Рис. 5. Валковый (слева) и вальцевый (справа) прессы для уплотнения порошков.

Экструзия-образование гранул путем продавливания пластично-вязкой массы с помощью шнека через головку экструдера с послед. разрезанием или дроблением материала. Метод используют в осн. для Г. термопластов, каучуков и резиновых смесей, а также концентриров. кормов. наиб. распространение получили червячные экструдеры. Порошкообразный материал плавится и выдавливается в виде жгутов или лент, к-рые режутся непосредственно после выхода из головки или дробятся после охлаждения в спец. ванне. При Г. мучнистых кормов их обрабатывают паром или смешивают с водой или биомассой, подают на вращающуюся перфорированную матрицу, выдавливают через ее отверстия и разрезают на гранулы ножами.

Лит.. Колпашников А. И., Ефремов А. В., Гранулированные материалы, М., 1977; Классен П. В., Гриша ев И. Г., Основы техники гранулирования, М., 1982. П. В. Классен.


N-галогенимиды Габриеля реакция Гадолинии Газгольдеры Газификация нефтяных остатков Газификация твердых топлив подземная Газификация твёрдых топлив Газо-жидкостная хроматография Газоадсорбционная хроматография (гах) Газоанализаторы Газов осушка Газов очистка Газов разделение Газов увлажнение Газовая коррозия Газовая постоянная Газовая хроматография Газовые гидраты Газовые конденсаты Газовый анализ Газойль Газопроницаемость Газотурбинные масла Газотурбинные топлива Газофазная полимеризация Газы Газы нефтепереработки Газы нефтяные попутные Галактуроновая кислота Галлий Галлийорганические соединения Галлия антимонид Галлия арсенид Галлия галогениды Галлия оксиды Галлия фосфид Галловая кислота Галогенальдегиды и галогенкетоны Галогенангидриды карбоновыхкислот Галогенантрахиноны Галогениды Галогенирование Галогеноспирты Галогентионфосфаты Галогенфосфаты Галогенфосфины Галогенфосфиты Галогенцианиды Галогены Галохромия Галургия Гальвани-потенциал Гальванопластика Гальваностегия Гальванотехника Ганглиоблокирующиесредства Ганглиозиды Гапто Гастрин Гафний Гваякол Гей-люссака законы Гексаметапол Гексаметилендиамин Гексаметилендиизоцианат Гексаметиленимин Гексаметилентетрамин Гексан с6н14 Гексанитробензол Гексафторацетилацетон Гексафторацетон Гексафторбензол Гексафтордифенилолпропан Гексафторпропилен Гексафторпропиленоксид Гексахлор-1,3-циклопентадиен Гексахлорбензол Гексахлорксилолы Гексахлорциклогексан Гексахлорэтан Гексен Гексенал Гексил Гексоген Гексозы Гексокиназа Гели Гелий Гелиотропин Гелля -фольгарда -зелинского реакция Гельмгольца энергия Гем.. Гемицеллюлозы Гемоглобин Гемоцианины Ген Генетическая инженерия Генетический код Геном Генри закон Геометрические изомеры Геохимические классификации элементов Геохимические методы поисков полезных ископаемых Геохимические процессы Геохимия Гепарин Гептан Гептаналь Гераниол Гербе реакция Гербициды Германий Германийорганические соединения Германия оксиды Герметики Гесса закон Гестагены Гетероароматические соединения Гетерогенная система Гетерогенные реакции Гетерогенный катализ Гетеролитические реакции Гетерополисоединения Гетероциклические соединения Гетинакс Геттеры Гиацинт аль Гиббереллины Гиббса правило фаз Гиббса энергия Гиббса-дюгема уравнение Гибкие производства Гибридизация атомных орбиталей Гибридные методы анализа Гидантоин Гидр азиды карбоновых кислот Гидравлические жидкости Гидравлический транспорт Гидразиды арилсульфокислот Гидразин Гидразина замещенные органические Гидразоны Гидразосоединения Гидратация Гидратированный электрон Гидратроповый альдегид Гидратцеллюлозные волокна Гидраты Гидрдзильные радикалы Гидрид-ион Гидриды Гидрирование Гидрирования число Гидрогалогенирование Гидрогенизация жиров Гидрогенизация угля Гидрогенолиз Гидродеалкилирование Гидродеароматизация Гидродоочистка Гидрокортизон Гидрокрекинг Гидроксамовые кислоты Гидроксид-анион Гидроксиды Гидроксил Гидроксиламин Гидроксиламина производные органические Гидроксильное число Гидроксицитронеллаль Гидроксокомплексы Гидроксоний-ион Гидролазы Гидролиз Гидролизные производства Гидрометаллургия Гидромеханические процессы Гидрообессеривание Гидроочистка Гидропероксиды органические Гидросилилирование Гидросфера Гидротермальные процессы Гидротропы Гидрофильно-липофильный баланс Гидрофильность Гидрофобное взаимодействие Гидроформилирование Гидроформинг Гидрофосфорильные соединения Гидрофториды металлов Гидрохимия Гидрохинон Гидроцианирование Гиллеспи теория Гипероксиды Гиполипидемические средства Гипотензивные средства Гипофосфиты неорганические Гипофосфиты органические Гипохлориты Гипс Гипсохромный сдвиг Гистамин Гистидин Гистоны Гистохимия Глазурь Глиадины Гликоген Гликозиды Гликозиды сердечные Гликозилдиглицериды Гликозилтрансферазы Гликолевая кислота Гликоли Гликолиз Гликолипиды Гликопротеины Гликосфинголипиды Глимы Глины Глиоксаль Глиоксилатный цикл Глицеральдегидфосфатдегидрогеназа Глицериды Глицерин Глицериновый альдегид Глицидальдегид Глицидилметакрилат Глицидные эфиры Глицидол Глутаматдегидрогеназа Глутаматсинтаза Глутамин Глутаминовая кислота Глутаминсинтетаза Глутатион Глутатионредуктаза Глутатионтрансферазы Глюкагон Глюкоза Глюконеогенез Гольмий Гомберга - бахмана - хёя реакция Гомогенная система Гомогенные реакции Гомогенный катализ Гомолитические реакции Гомологизация Гомологический ряд Гомотопия Гонадолиберин Горение Гормоны Гормоны тимуса Горнохимическое сырьё Горчичное масло Горючесть Горючие сланцы Горячие атомы Гофмана - лёфлера реакция Гофмана реакции Гравиметрия Гравитационная постоянная Градирни Гракаускаса реакция Гранаты синтетические Граничных орбиталей теория Гранулирование Гранулиты Графит Графита соединения Графитопласты Графов теория Гремучая ртуть Гремучий студень Гризеофульвин Гриньяра реакция Гротгуса-дрейпера закон Грохочение Грунтовки Гуанамино-формальдегидные смолы Гуанидин Гуанин Гуанозин Гуанозинтетрафосфат Гудрон Гука закон Гуминовые кислоты Гуттаперча Кристаллы висмута
www.pravda.ru: В День города над Москвой разгонят тучи самолетами
06.09.2013
… десятилетиями технологию распыления реагентов, позволяющих рассеять облачность. В зависимости от ее характера, применяют разнообразные реагенты: ионы серебра, цемент, "сухой лед", жидкий азот, гранулированную
www.medpulse.ru: Кофе: пить, не пить, какой и сколько?
20.03.2011
… качестве. Например, в жестяных банках, как правило, продается более дешевый кофе. Такие банки могут даже придать своему содержимому "металлический" привкус. Качественный напиток, к которому относят гранулированный и сублимированный кофе, фасуют в стеклянные банки. Стекло считается более престижной тарой, способной сохранить аромат и вкус растворимого напитка. …
www.missus.ru: Чайно-косметическая церемония
05.11.2009
… придания волосам каштанового оттенка приготовьте крепкий настой черного гранулированного чая. Возьмите 2 столовые ложки на литр воды и прокипятите на медленном огне 10-15 минут, дайте настояться 5 минут, процедите и нанесите на волосы. Через четверть часа появится легкий оттенок, через …