Словарь научных терминов
Газы

ГАЗЫ, в-ва в агрегатном состоянии, характеризующемся слабым взаимод. составляющих в-во частиц (по сравнению с их средней кинетич. энергией), в результате чего Г. заполняют весь предоставленный им объем. Г., как и нормальные (обычные) жидкости, макроскопически однородны и изотропны при отсутствии внеш. воздействий, в отличие от анизотропных состояний в-ва - твердого кристаллического и жидких кристаллов. Строго различать жидкое и газообразное состояния в-ва на фазовой диаграмме можно лишь при т-ре ниже критической Гкр (см. рис.), т.к. выше Ткр газ нельзя превратить в жидкость повышением давления. Ниже Ткр возможно фазовое равновесие жидкость — пар, причем газообразному состоянию отвечает фаза с меньшей плотностью (Г., находящийся в термодинамич. равновесии с жидкой или твердой фазой того же в-ва, обычно наз. паром). В критич. точке различие между жидкостью и паром исчезает, поэтому возможен непрерывный (без фазового превращения) переход из газообразного состояния в жидкое. При этом все св-ва в-ва меняются постепенно (наиб, быстро вблизи критич. точки). В тройной точке Т^ сосуществуют газ, жидкость и твердое тело (кристалл), причем плотность Г. вблизи тройной точки обычно на три порядка меньше плотности жидкости или кристалла. Кривую сосуществования жидкости и Г. наз. кривой парообразования, твердого тела и Г.-кривой сублимации (возгонки).
http://www.medpulse.ru/image/encyclopedia/9/0/4/4904.jpeg

Диаграмма состояния однокомпонентной системы в координатах давление р-темпера-тура Т! Линии /, 2 и 3-кривые парообразования, плавления и возгонки соотв.; 7"кр и ркр-координаты критич. точки; Ттр и ртр-координаты тройной точки; И,—-Критич. объем.

В нормальных условиях (при 0°С и атм. давлении) в газообразном состоянии находятся элементы гелиевой группы (Не, Ne и т. д.), а также ряд элементов, образующих молекулярные газы: О2, N2, Н2, Г2 и С12. Атм. воздух состоит из N2 и О2 (соотв. 75,5 и 23,1% по массе), благородных газов, N2O, CO2 и паров Н2О (остальные 1,4%). В природе Г. образуются как продукты жизнедеятельности бактерий, при превращениях орг. в-в, восстановлении минер. солей и др. В недрах Земли Г., в основном СН4 и др. легкие углеводороды, как правило, сопутствуют нефтям; встречаются газовые месторождения, содержащие до 70% неуглеводородных компонентов (H2S, CO2 и" др.).

При низких давлениях Г. смешиваются друг с другом в любых соотношениях. При высоких давлениях и т-рах выше Ткр взаимная р-римость Г. может быть ограниченной и возможно равновесное сосуществование двух газовых фаз; такие системы рассматривают как расслаивающиеся газовые р-ры (см. Критическое состояние). Р-римость Г. в жидкостях и твердых телах может достигать больших значений (см. табл. 1).

Табл. 1.-РАСТВОРИМОСТЬ ГАЗОВ В ЖИДКОСТЯХ ПРИ 298 К И 10s Па (в мольных долях)
http://www.medpulse.ru/image/encyclopedia/9/0/5/4905.jpeg

Теория газообразного состояния. Важнейшая теоретич. модель газообразного состояния-ид сальный газ, для к-рого энергия взаимод. между молекулами пренебрежимо мала по сравнению с кинетич. энергией их хаотич. (теплового) движения. Ур-ние состояния для п молей идеального Г., занимающего объем V при т-ре Т и давлении р, имеет вид: pV = nRT, где R = 8,31 ДжДмоль-К)-газовая постоянная (см. Клапейрона - Менделеева уравнение). Внутр. энергия 1 моля одноатомного идеального газа ? = 3/2/?Т ДлЯ идеального Г. строго выполняются Бойля-Мариотта закон и Гей-Люссака законы, для реальных Г. эти законы выполняются приближенно-тем лучше, чем дальше р и Т от критич. значений.

Статистич. физика позволяет вычислить макроскопич. св-ва идеального Г., рассматривая его как систему из N квазинезависимых молекул и определяя вероятность раз л. состояний отдельной молекулы. В идеальном Г. для каждой из молекул все окружающие частицы представляют термостат, с к-рым она обменивается энергией. В соответствии с канонич. распределением Гиббса среднее числоhttp://www.medpulse.ru/image/encyclopedia/9/0/6/4906.jpeg молекул в 1-том состоянии с энергией Е, равно:
http://www.medpulse.ru/image/encyclopedia/9/0/7/4907.jpeg

где k- постоянная Больцмана; Л-коэф., зависящий от Т. Применение данной ф-лы в случае, когда движение молекул идеального Г. подчиняется законам классич. механики, позволяет установить распределение молекул по скоростям, а также их пространств. распределение в поле внеш. сил. В соответствии с распределением Максвелла среднее число dN молекул с массой ш, компоненты скоростей к-рых лежат в интервалах от vx до vx + dvx, от vy до vy + dvy и от v. до vz + dvz, равно:
http://www.medpulse.ru/image/encyclopedia/9/0/8/4908.jpeg

где N- общее число молекул. В любом реальном Г. распределение по скоростям центров инерции молекул представляет собой распределение Максвелла. При наличии внеш. силового поля, в к-ром потенциальная энергия молекулы идеального Г. зависит от координат ее центра инерции, концентрация молекул устанавливается распределением Больцмана:
http://www.medpulse.ru/image/encyclopedia/9/0/9/4909.jpeg

где п0- концентрация молекул в отсутствие поля; U(x, у, z)- потенциальная энергия молекулы во внеш. поле. В частности, в однородном поле тяжести, направленном вдоль оси z, U = mgz, гдеhttp://www.medpulse.ru/image/encyclopedia/9/1/0/4910.jpeg-ускорение своб. падения, и распределение плотности газа определяется т. наз. барометрической формулой:
http://www.medpulse.ru/image/encyclopedia/9/1/1/4911.jpeg

где и0 - плотность газа в точке z = 0.

При низких т-рах классич. статистика неприменима к идеальному Г. и заменяется квантовой статистикой Бо-зе-Эйнштейна или Ферми-Дирака для частиц с целым или полуцелым спином соответственно. Т-ра, ниже к-рой отчетливо проявляются квантовые св-ва идеального Г., тем выше, чем меньше масса частиц и чем больше плотность числа частиц. Для обычных Г. соответствующая т-ра очень низка; квантовые эффекты практически существенны лишь для Не, Н2 и в нек-рой степени для Ne. Квантовую природу системы, проявляющуюся в дискретности энергетич. спектра, необходимо учитывать при описании внутр. состояний молекул (электронных, колебательных, а при низких т-pax-и вращательных). Энергетич. спектр молекул Г., соответствующий их постулат, движению, можно считать квазинепрерывным, т.к. расстояния между соседними уровнями энергии малы.

Применение законов классич. статистики с учетом квантовых закономерностей позволяет рассчитать по молекулярным данным термодинамич. функции Г. (энтропию, внутр. энергию, энергии Гельмгольца и Гиббса), константы хим. равновесия газофазных р-ций, теплоемкость и кинетич. характеристики, знание к-рых требуется при проектировании мн. технол. процессов. Так, теплоемкость идеального Г. может быть рассчитана в классич. теории, если известно число i степеней свободы молекулы. Вклад каждой из вра-щат. и постулат, степеней свободы молекулы в молярную теплоемкость Су равен R/2, а каждой из колебат. степеней свободы-JR (т. наз. закон равнораспределения). Частица одноатомного Г. обладает тремя постулат, степенями свободы, соотв. его теплоемкость составляет ЗЯ/2, что хорошо совпадает с эксперим. данными. Молекула двухатомного Г. обладает тремя поступательными, двумя вращательными и одной колебат. степенями свободы, и, согласно закону равнораспределения, Су = 1R/2, однако это значение не совпадает с опытными данными даже при обычных т-рах. Наблюдаемое расхождение, а также температурная зависимость теплоемкости Г. объясняются квантовой теорией (подробнее см. в ст. Теплоемкость).

Кинетич. св-ва Г.-теплопроводность, взаимная диффузия (для газовых смесей), вязкость-определяются столкновениями молекул. В простейшем случае явления переноса рассматриваются для разреженного Г., молекулы к-рого считаются упругими шарами, взаимодействующими лишь в момент соударения. В первом приближении все коэф. переноса выражаются через среднюю длину своб. пробега молекулыhttp://www.medpulse.ru/image/encyclopedia/9/1/2/4912.jpeg гдеhttp://www.medpulse.ru/image/encyclopedia/9/1/3/4913.jpeg-диаметр молекулы. Так,http://www.medpulse.ru/image/encyclopedia/9/1/4/4914.jpeg , гдеhttp://www.medpulse.ru/image/encyclopedia/9/1/5/4915.jpeg-средняя скорость теплового движения молекул. Более строгая теория учитывает взаимод. молекул на расстоянии, что приводит к появлению в выражениях для коэф. переноса т. наз. интегралов столкновений, к-рые м. б. рассчитаны, если известен вид потенциала межмолекулярных взаимодействий.

Свойства реальных газов. Неидеальность Г. в молекуляр-но-кинетич. теории рассматривается как результат взаимод. молекул. В первом приближении ограничиваются рассмотрением парных взаимодействий, во втором-тройных и т.д. Такой подход приводит к вириалъному уравнению состояния, коэф. к-рого м. б. теоретически рассчитаны, если известен потенциал межмол. взаимодействий. Наиб. полезно вириальное ур-ние при рассмотрении св-в Г. малой и умеренной плотности. Предложено много эмпирич. и по-луэмпирич. ур-ний, связывающих р, V и Т, к-рые либо исходят из нек-рой простой модели взаимодействий (напр., Ван-дер-Ваалъса уравнение), либо выражают чисто эмпирич. зависимость, справедливую для определенного класса в-в (см. Уравнения состояния).

Наличие межмол. взаимодействий оказывает влияние на все св-ва реальных Г., в т.ч. приводит и к тому, что их внутр. энергия зависит от плотности. С этим св-вом связан эффект Джоуля-Томпсона: изменение т-ры газа при его адиабатич. расширении, напр. при протекании с малой постоянной скоростью через пористую перегородку (этот процесс наз. дросселированием). Учет межмол. взаимодействий и внутр. строения молекул необходим при решении мн. теоретич. задач физ.химии. Молекул, к-рые можно было бы принимать как упругие шары, практически не бывает, и при расчете св-в реальных Г. применяют др. молекулярные модели. Из них Наиб. употребительны простые модели гармонич. осциллятора и жесткого ротатора. Физ. св-ва нек-рых газов приведены в табл. 2 [по данным Автоматизированной информац. системы достоверных данных о теплофиз. св-вах газов и жидкостей (АИСТ)].

Лит.: Гиршфельдер Дж., КертиссЧ., Берд Р., Молекулярная теория газов и жидкостей, пер. с англ., М., 1961; Рид Р., ПраусницДж., Шервуд Т., Свойства газов и жидкостей, пер. с англ., Л., 1982; Смирнова Н. А., Методы статистической термодинамики в физической химии, 2 изд., М, 1982. М. А. Анисимов.

Табл. 2.-ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ГАЗОВ ПРИ НОРМАЛЬНЫХ УСЛОВИЯХ (Г= 273,15 К, р = 1,01 * 105 Па)
http://www.medpulse.ru/image/encyclopedia/9/1/6/4916.jpeg


N-галогенимиды Габриеля реакция Гадолинии Газгольдеры Газификация нефтяных остатков Газификация твердых топлив подземная Газификация твёрдых топлив Газо-жидкостная хроматография Газоадсорбционная хроматография (гах) Газоанализаторы Газов осушка Газов очистка Газов разделение Газов увлажнение Газовая коррозия Газовая постоянная Газовая хроматография Газовые гидраты Газовые конденсаты Газовый анализ Газойль Газопроницаемость Газотурбинные масла Газотурбинные топлива Газофазная полимеризация Газы Газы нефтепереработки Газы нефтяные попутные Галактуроновая кислота Галлий Галлийорганические соединения Галлия антимонид Галлия арсенид Галлия галогениды Галлия оксиды Галлия фосфид Галловая кислота Галогенальдегиды и галогенкетоны Галогенангидриды карбоновыхкислот Галогенантрахиноны Галогениды Галогенирование Галогеноспирты Галогентионфосфаты Галогенфосфаты Галогенфосфины Галогенфосфиты Галогенцианиды Галогены Галохромия Галургия Гальвани-потенциал Гальванопластика Гальваностегия Гальванотехника Ганглиоблокирующиесредства Ганглиозиды Гапто Гастрин Гафний Гваякол Гей-люссака законы Гексаметапол Гексаметилендиамин Гексаметилендиизоцианат Гексаметиленимин Гексаметилентетрамин Гексан с6н14 Гексанитробензол Гексафторацетилацетон Гексафторацетон Гексафторбензол Гексафтордифенилолпропан Гексафторпропилен Гексафторпропиленоксид Гексахлор-1,3-циклопентадиен Гексахлорбензол Гексахлорксилолы Гексахлорциклогексан Гексахлорэтан Гексен Гексенал Гексил Гексоген Гексозы Гексокиназа Гели Гелий Гелиотропин Гелля -фольгарда -зелинского реакция Гельмгольца энергия Гем.. Гемицеллюлозы Гемоглобин Гемоцианины Ген Генетическая инженерия Генетический код Геном Генри закон Геометрические изомеры Геохимические классификации элементов Геохимические методы поисков полезных ископаемых Геохимические процессы Геохимия Гепарин Гептан Гептаналь Гераниол Гербе реакция Гербициды Германий Германийорганические соединения Германия оксиды Герметики Гесса закон Гестагены Гетероароматические соединения Гетерогенная система Гетерогенные реакции Гетерогенный катализ Гетеролитические реакции Гетерополисоединения Гетероциклические соединения Гетинакс Геттеры Гиацинт аль Гиббереллины Гиббса правило фаз Гиббса энергия Гиббса-дюгема уравнение Гибкие производства Гибридизация атомных орбиталей Гибридные методы анализа Гидантоин Гидр азиды карбоновых кислот Гидравлические жидкости Гидравлический транспорт Гидразиды арилсульфокислот Гидразин Гидразина замещенные органические Гидразоны Гидразосоединения Гидратация Гидратированный электрон Гидратроповый альдегид Гидратцеллюлозные волокна Гидраты Гидрдзильные радикалы Гидрид-ион Гидриды Гидрирование Гидрирования число Гидрогалогенирование Гидрогенизация жиров Гидрогенизация угля Гидрогенолиз Гидродеалкилирование Гидродеароматизация Гидродоочистка Гидрокортизон Гидрокрекинг Гидроксамовые кислоты Гидроксид-анион Гидроксиды Гидроксил Гидроксиламин Гидроксиламина производные органические Гидроксильное число Гидроксицитронеллаль Гидроксокомплексы Гидроксоний-ион Гидролазы Гидролиз Гидролизные производства Гидрометаллургия Гидромеханические процессы Гидрообессеривание Гидроочистка Гидропероксиды органические Гидросилилирование Гидросфера Гидротермальные процессы Гидротропы Гидрофильно-липофильный баланс Гидрофильность Гидрофобное взаимодействие Гидроформилирование Гидроформинг Гидрофосфорильные соединения Гидрофториды металлов Гидрохимия Гидрохинон Гидроцианирование Гиллеспи теория Гипероксиды Гиполипидемические средства Гипотензивные средства Гипофосфиты неорганические Гипофосфиты органические Гипохлориты Гипс Гипсохромный сдвиг Гистамин Гистидин Гистоны Гистохимия Глазурь Глиадины Гликоген Гликозиды Гликозиды сердечные Гликозилдиглицериды Гликозилтрансферазы Гликолевая кислота Гликоли Гликолиз Гликолипиды Гликопротеины Гликосфинголипиды Глимы Глины Глиоксаль Глиоксилатный цикл Глицеральдегидфосфатдегидрогеназа Глицериды Глицерин Глицериновый альдегид Глицидальдегид Глицидилметакрилат Глицидные эфиры Глицидол Глутаматдегидрогеназа Глутаматсинтаза Глутамин Глутаминовая кислота Глутаминсинтетаза Глутатион Глутатионредуктаза Глутатионтрансферазы Глюкагон Глюкоза Глюконеогенез Гольмий Гомберга - бахмана - хёя реакция Гомогенная система Гомогенные реакции Гомогенный катализ Гомолитические реакции Гомологизация Гомологический ряд Гомотопия Гонадолиберин Горение Гормоны Гормоны тимуса Горнохимическое сырьё Горчичное масло Горючесть Горючие сланцы Горячие атомы Гофмана - лёфлера реакция Гофмана реакции Гравиметрия Гравитационная постоянная Градирни Гракаускаса реакция Гранаты синтетические Граничных орбиталей теория Гранулирование Гранулиты Графит Графита соединения Графитопласты Графов теория Гремучая ртуть Гремучий студень Гризеофульвин Гриньяра реакция Гротгуса-дрейпера закон Грохочение Грунтовки Гуанамино-формальдегидные смолы Гуанидин Гуанин Гуанозин Гуанозинтетрафосфат Гудрон Гука закон Гуминовые кислоты Гуттаперча Кристаллы висмута