Словарь научных терминов
Газификация твердых топлив подземная
ГАЗИФИКАЦИЯ ТВЕРДЫХ ТОПЛИВ ПОДЗЕМНАЯ, превращ. твердых топлив (угля, горючих сланцев) непосредственно на месте их залегания в недрах земной коры в горючий газ, к-рый выводят на пов-сть через буровые скважины.

В пром. масштабе осуществлена подземная газификация угля (П. г. у.). Идея ее была предложена Д. И. Менделеевым (1888), к-рый писал: "... настанет, вероятно, со временем даже такая эпоха, что угля из земли вынимать не будут, а там в земле его сумеют превращать в горючие газы..."; позднее (1912) эту же идею высказал У. Рамзай. В. И. Ленин в статье "Одна из великих побед техники" высоко оценил идею П. г.у. и ее преимущества перед шахтным методом добычи угля. СССР принадлежит приоритет в разработке (с 1930) и внедрении техн. решений П. г. у.

Для стабильного получения горючего газа под землей необходимо учитывать особенности как самого пласта топлива, так и вмещающих его пород (напр., состав и степень метаморфизма угля, прочность пород и т.д.). П.г.у. осуществляется под действием высокой т-ры (1000-2000 °С) и подаваемого под давлением дутья - разл. окислителей (как правило, воздуха, О2 и водяного пара, реже-СО2). Для подвода дутья и отвода газа газификацию проводят в скважинах, расположенных в определенном порядке и образующих т. наз. подземный генератор. В нем идут те же хим. р-ции, что и в обычных газогенераторах (см. Газификация твердых топлив). Однако условия подземной газификации специфичны. Вмещающие пласт топлива горные породы представляют собой своеобразные стенки реактора и одновременно материал, заполняющий выгазованное пространство. В газификации участвуют подземные воды, а также влага угля и горных пород. В отличие от наземной газификации, где топливо по мере расходования поступает в газогенератор, в случае подземной газификации при выгазовывании одного участка пласта топлива требуется переход к другому. Возникает необходимость параллельно с газификацией одних участков пласта подготавливать к газификации иные его участки.

Существует неск. методов П. г. у. Основой ее практич. реализации явился предложенный в СССР (1933-34) и впоследствии развитый (1945-48) поточный метод газификации в целике пласта топлива. Метод состоит в газификации пласта в искусственно созданном канале (т. наз. канале газификации) с регулируемым расходом дутья и газа. В эксплуатации могут находиться сразу неск. таких каналов.

При поточном методе газообразование происходит на пов-сти канала, в термически подготовл. участке пласта топлива и в самом канале, пов-сть к-рого разделяет газовую и твердую фазы. Р-ции на пов-сти канала гетерогенны; скорость их определяется гл. обр. диффузией дутья и размером этой пов-сти. В канале газификации, где движется осн. масса дутья, газа и паров, протекают гомог. р-ции, скорость к-рых зависит прежде всего от т-ры и концентрации реагирующих в-в. В твердой фазе происходят термич. разложение и сушка орг. соед., входящих в состав угля и горных пород. При движении образующихся продуктов по порам и трещинам в направлении канала развиваются как гетерогенные, так и гомогенные окислит.-восстановит. р-ции. Скорость процесса в твердой фазе в осн. определяется его т-рой.

В каждый канал газификации в соответствующей последовательности через один конец подают дутье, а через другой отводят газ. Ширина полосы угля, при к-рой в данных горно-геол. условиях происходит газификация, определяет расстояние между каналами.

Способ создания первонач. каналов газификации в пласте топлива во многом обусловливает конструктивную схему подземного газогенератора. Наиб. полно удовлетворяют тр сбованиям П. г. у. бесшахтные способы подготовки каналов, когда все работы осуществляют с пов-сти земли, связь к-рой с пластом топлива обеспечивается буровыми скважинами. В соответствии с горно-геол. условиями до встречи с пластом бурят вертикальные, наклонные и криволинейные скважины, обсаживаемые трубами, причем затрубное пространство цементируют. Для соединения (сбойки) скважин между собой используют след. способы: фильтрационный, электрический с применением гидравлич. разрыва пласта, а также бурение скважин по угольному пласту (наклонных, горизонтальных и т. д.) с послед. расширением созданных щелей гидроразрыва или каналов посредством выжигания угля.

При фильтрац. способе воздух, нагнетаемый через одну из скважин, распространяясь по пласту топлива и горным породам, частично проходит и в соседние скважины. Созданный через одну из скважин очаг горения в пласте топлива поддерживается за счет воздуха (или др. окислителя), притекающего из др. скважины, и перемещается навстречу потоку дутья. При подходе очага горения к дутьевой скважине гидравлич. сопротивление прохождению дутья снижается; образовавшийся канал можно применять для газификации. В пластах топлива, обладающих малой газопроницаемостью, используют дутье, сжатое до давления, к-рое превышает давление горных пород на данной глубине залегания пласта. При этом существенно возрастает кол-во дутья, принимаемого скважиной.

Электрич. способ создания газопроницаемых каналов основан на сниженииhttp://www.medpulse.ru/image/encyclopedia/7/9/5/4795.jpeg участка пласта топлива под влиянием теплового пробоя при приложении через скважины элек-трич. тока высокого напряжения. Полученный электропроводящий канал между скважинами используется в целях подвода тока небольшого напряжения для коксования топлива под действием выделяемого тепла. Этот канал обладает достаточной газопроницаемостью и м. б. применен для сбойки скважин фильтрац. способом до образования своб. канала, к-рый впоследствии используют для газификации по поточному методу.

По мере выгазовывания пласта топлива покрывающие его верх. породы под действием горного давления сдвигаются и заполняют выработанное пространство. Вследствие этого размеры и структура каналов газификации в течение продолжит. периода практически не изменяются, что наряду с квазистационарностью газификации обусловливает постоянство состава получаемого газа. В зависимости от кач-ва угля, характеристик и св-в пласта и вмещающих его пород газификация устойчива до достижения оптимальной для данной горно-геол. обстановки степени выгазованности участка пласта. Дальнейшее увеличение этого параметра приводит к дополнит. затратам тепла на нагревание горной породы, испарение влаги, а также к образованию обводненных потоков дутья, дожигающих горючие компоненты газа. Кач-во газа ухудшается, возникает необходимость ввода в эксплуатацию новых каналов газификации. Из-за отсутствия газонепроницаемых стенок происходят потери дутья и газа.

Помимо поточного метода П. г. у. известен метод, к-рый базируется на использовании прир. трещин и пор угольного пласта. Для газификации этот пласт на определенном участке зажигают и нагнетают через скважину дутье. При постепенном нагревании угля число трещин и пористость возрастают, что вызывает увеличение газопроницаемости участка пласта. Газообразные продукты проходят через поры и трещины к газоотводящему коллектору (или скважине). Данный метод не нашел применения из-за малой и неравномерной проницаемости большинства пластов твердых топлив, повыш. расходов энергии и потерь дутья и газа, особенно при обрушении кровли над выгазованным пространством.

Состав и теплота сгорания газа (см. табл.) зависят как от кач-ва угля и состава дутья, так и от горно-геол. условий (прежде всего от мощности и угла залегания пластов, св-в горных пород, притока подземных вод и т.п.).

Газ, производимый путем П. г. у., применяют для энергетич. нужд (в осн. как котельное топливо). Себестоимость газа (в пересчете на условное топливо) ниже себестоимости угля, добываемого шахтным способом, и выше себестоимости угля открытой добычи. Технико-экономич. показатели П. г. у. определяются масштабами произ-ва газа. При П. г. у. отпадает необходимость в труде людей под землей, улучшаются его условия и состояние воздушного бассейна, не нарушается плодородный слой почвы. Однако газ, полученный на воздушном дутье, по теплотехн. св-вам существенно уступает природному.

ХАРАКТЕРИСТИКА ГАЗА, ПОЛУЧЕННОГО ГАЗИФИКАЦИЕЙ УГЛЯ НА ВОЗДУШНОМ ДУТЬЕ
http://www.medpulse.ru/image/encyclopedia/7/9/6/4796.jpeg

Освоенность процесса на воздушном дутье и глуб. до 250-300 м открывает перспективу П. г. у. при повыш. давлении и на парокислородном дутье с получением газа, содержащего значительные кол-ва СН4 и др. горючих компонентов.

Дальнейшее развитие при определенных условиях (малая глубина залегания, наличие небольших кол-в минер. примесей и т.д.) получат также исследования в области подземной газификации горючих сланцев.

Кроме СССР, работы по подземной газификации проводятся в США, ФРГ, Франции и др. странах. Объем производимого в СССР газа ок. 1,5 млрд. м3 (1980).

Лит.: Менделеев Д. И., Соч., т. 11, Л.-М., 1949, с. 66; Скафа П. В., Подземная газификация углей, М., 1960; Подземная газификация угольных пластов, М., 1982. Н.А. Федоров.


N-галогенимиды Габриеля реакция Гадолинии Газгольдеры Газификация нефтяных остатков Газификация твердых топлив подземная Газификация твёрдых топлив Газо-жидкостная хроматография Газоадсорбционная хроматография (гах) Газоанализаторы Газов осушка Газов очистка Газов разделение Газов увлажнение Газовая коррозия Газовая постоянная Газовая хроматография Газовые гидраты Газовые конденсаты Газовый анализ Газойль Газопроницаемость Газотурбинные масла Газотурбинные топлива Газофазная полимеризация Газы Газы нефтепереработки Газы нефтяные попутные Галактуроновая кислота Галлий Галлийорганические соединения Галлия антимонид Галлия арсенид Галлия галогениды Галлия оксиды Галлия фосфид Галловая кислота Галогенальдегиды и галогенкетоны Галогенангидриды карбоновыхкислот Галогенантрахиноны Галогениды Галогенирование Галогеноспирты Галогентионфосфаты Галогенфосфаты Галогенфосфины Галогенфосфиты Галогенцианиды Галогены Галохромия Галургия Гальвани-потенциал Гальванопластика Гальваностегия Гальванотехника Ганглиоблокирующиесредства Ганглиозиды Гапто Гастрин Гафний Гваякол Гей-люссака законы Гексаметапол Гексаметилендиамин Гексаметилендиизоцианат Гексаметиленимин Гексаметилентетрамин Гексан с6н14 Гексанитробензол Гексафторацетилацетон Гексафторацетон Гексафторбензол Гексафтордифенилолпропан Гексафторпропилен Гексафторпропиленоксид Гексахлор-1,3-циклопентадиен Гексахлорбензол Гексахлорксилолы Гексахлорциклогексан Гексахлорэтан Гексен Гексенал Гексил Гексоген Гексозы Гексокиназа Гели Гелий Гелиотропин Гелля -фольгарда -зелинского реакция Гельмгольца энергия Гем.. Гемицеллюлозы Гемоглобин Гемоцианины Ген Генетическая инженерия Генетический код Геном Генри закон Геометрические изомеры Геохимические классификации элементов Геохимические методы поисков полезных ископаемых Геохимические процессы Геохимия Гепарин Гептан Гептаналь Гераниол Гербе реакция Гербициды Германий Германийорганические соединения Германия оксиды Герметики Гесса закон Гестагены Гетероароматические соединения Гетерогенная система Гетерогенные реакции Гетерогенный катализ Гетеролитические реакции Гетерополисоединения Гетероциклические соединения Гетинакс Геттеры Гиацинт аль Гиббереллины Гиббса правило фаз Гиббса энергия Гиббса-дюгема уравнение Гибкие производства Гибридизация атомных орбиталей Гибридные методы анализа Гидантоин Гидр азиды карбоновых кислот Гидравлические жидкости Гидравлический транспорт Гидразиды арилсульфокислот Гидразин Гидразина замещенные органические Гидразоны Гидразосоединения Гидратация Гидратированный электрон Гидратроповый альдегид Гидратцеллюлозные волокна Гидраты Гидрдзильные радикалы Гидрид-ион Гидриды Гидрирование Гидрирования число Гидрогалогенирование Гидрогенизация жиров Гидрогенизация угля Гидрогенолиз Гидродеалкилирование Гидродеароматизация Гидродоочистка Гидрокортизон Гидрокрекинг Гидроксамовые кислоты Гидроксид-анион Гидроксиды Гидроксил Гидроксиламин Гидроксиламина производные органические Гидроксильное число Гидроксицитронеллаль Гидроксокомплексы Гидроксоний-ион Гидролазы Гидролиз Гидролизные производства Гидрометаллургия Гидромеханические процессы Гидрообессеривание Гидроочистка Гидропероксиды органические Гидросилилирование Гидросфера Гидротермальные процессы Гидротропы Гидрофильно-липофильный баланс Гидрофильность Гидрофобное взаимодействие Гидроформилирование Гидроформинг Гидрофосфорильные соединения Гидрофториды металлов Гидрохимия Гидрохинон Гидроцианирование Гиллеспи теория Гипероксиды Гиполипидемические средства Гипотензивные средства Гипофосфиты неорганические Гипофосфиты органические Гипохлориты Гипс Гипсохромный сдвиг Гистамин Гистидин Гистоны Гистохимия Глазурь Глиадины Гликоген Гликозиды Гликозиды сердечные Гликозилдиглицериды Гликозилтрансферазы Гликолевая кислота Гликоли Гликолиз Гликолипиды Гликопротеины Гликосфинголипиды Глимы Глины Глиоксаль Глиоксилатный цикл Глицеральдегидфосфатдегидрогеназа Глицериды Глицерин Глицериновый альдегид Глицидальдегид Глицидилметакрилат Глицидные эфиры Глицидол Глутаматдегидрогеназа Глутаматсинтаза Глутамин Глутаминовая кислота Глутаминсинтетаза Глутатион Глутатионредуктаза Глутатионтрансферазы Глюкагон Глюкоза Глюконеогенез Гольмий Гомберга - бахмана - хёя реакция Гомогенная система Гомогенные реакции Гомогенный катализ Гомолитические реакции Гомологизация Гомологический ряд Гомотопия Гонадолиберин Горение Гормоны Гормоны тимуса Горнохимическое сырьё Горчичное масло Горючесть Горючие сланцы Горячие атомы Гофмана - лёфлера реакция Гофмана реакции Гравиметрия Гравитационная постоянная Градирни Гракаускаса реакция Гранаты синтетические Граничных орбиталей теория Гранулирование Гранулиты Графит Графита соединения Графитопласты Графов теория Гремучая ртуть Гремучий студень Гризеофульвин Гриньяра реакция Гротгуса-дрейпера закон Грохочение Грунтовки Гуанамино-формальдегидные смолы Гуанидин Гуанин Гуанозин Гуанозинтетрафосфат Гудрон Гука закон Гуминовые кислоты Гуттаперча Кристаллы висмута