Словарь научных терминов

Вудворда-хофмана правила

ВУДВОРДА-ХОФМАНА ПРАВИЛА, предсказывают стереохим. направление и предпочтительные условия согласованных перициклич. р-ций, т.е. р-ций, протекающих без участия промежут. продуктов (см. Перициклические реакции). Для них справедлив сформулированный Р. Вудвордом и Р. Хофманом принцип сохранения орбитальной симметрии: согласованные р-ции, в к-рых заполненные молекулярные орбитали исходных реагентов и продуктов полностью соответствуют друг другу по св-вам симметрии (коррелируют между собой), протекают легче, чем р-ции, в к-рых указанное соответствие нарушается. Конкретизация этого принципа приводит к В.-Х. п.

Применение В.-Х.п. основано на выделении в реагентах и продуктах перициклич. р-ций орбиталей тех связей и групп, к-рые непосредственно включены в процессы разрыва старых и образования новых связей и образуют в переходном состоянии циклич. систему. Для описания стереохимии р-ции вводится дополнит. характеристика. Процесс, в к-ром одновременно образуются (или разрываются) связи с одной стороны плоскости молекулы, наз. супраповерхностным (обозначается s). Если эти связи в переходном состоянии расположены по разные стороны плоскости молекулы, р-цию относят к антараповерхностному типу (а). Напр., циклодимеризация этилена через переходное состояние с взаимно перпендикулярным расположением реагирующих молекул относится к s,a-присоединению:
https://www.medpulse.ru/image/encyclopedia/6/7/6/4676.jpeg

Также м. б. классифицированы электроциклич. р-ции и сигматропные перегруппировки. Напр., электроциклич. замыкание производных 1,3-бутадиена в циклобутены, осуществляющееся в условиях термич. превращения конротаторным путем (т.е. вращением концевых групп в одну сторону), описывается как s,а-циклоприсоединение:
https://www.medpulse.ru/image/encyclopedia/6/7/7/4677.jpeg

Аналогичное превращение, реализуемое фотохимически через возбужденное состояние и идущее в этих условиях дисротаторным способом (т.е. вращением концевых групп в противоположные стороны), соответствует s,s-циклоприсоединению:
https://www.medpulse.ru/image/encyclopedia/6/7/8/4678.jpeg

В случае 1,2-сигматропного смещения алкильной группы в карбкатионе RR'R"ССН2СН2+ перегруппировке с сохранением конфигурации мигрирующего центра соответствует s,s-циклоприсоединение, процессу с обращением конфигурации - s,a-циклоприсоединение:
https://www.medpulse.ru/image/encyclopedia/6/7/9/4679.jpeg

Осн. метод теоретич. анализа перициклич. р-ций-построение корреляц. диаграмм, при помощи к-рых устанавливаются соответствия по симметрии между орбиталями исходных реагентов и продуктов. Путь сближения реагентов (или отдельных связей для случая внутримол. превращения) определяет симметрию переходного состояния, в рамках к-рой устанавливаются корреляции между орбиталями реагентов и продуктов. В р-циях, разрешенных принципом сохранения орбитальной симметрии, все заполненные орбитали реагентов трансформируются в заполненные орбитали продуктов. Невыполнение этого условия -корреляция с антисвязывающими (т.е. энергетически невыгодными) орбиталями продуктов - означает симметрийный запрет р-ции в данном электронном состоянии.

Пример корреляц. диаграмм приведен на рис. Орбитали реагентов и продуктов классифицируются как симметричные S и антисимметричные А по отношению к элементам симметрии, сохраняющимся в ходе р-ции. Таковыми являются проходящие через центр связи С2—С3 ось симметрии второго порядка для конротаторного пути и плоскость симметрии для дисротаторного. Корреляц. линии, связывающие орбитали, показывают, что требования сохранения орбитальной симметрии выполняются для осн. состояния только в случае кон ротаторного процесса. Для дисротаторного орбитальhttps://www.medpulse.ru/image/encyclopedia/6/8/0/4680.jpeg1,3-бутадиена переходит в антисвязывающую орбитальhttps://www.medpulse.ru/image/encyclopedia/6/8/1/4681.jpeg циклобутена. Последняя м. б. заселена электронами только в возбужденном состоянии, поэтому дисротаторная р-ция разрешена только в возбужденном состоянии и реализуется фотохимически. Указанные предсказания полностью соответствуют эксперим. данным для разл. производных 1,3-бутадиена и циклобутена.
https://www.medpulse.ru/image/encyclopedia/6/8/2/4682.jpeg

Рис. Корреляционная диаграмма превращения 1,3-бутадиена в циклобутен; а-конротаторный путь, б-дисротаторный путь.

Анализ корреляц. диаграмм разл. типов перициклич. р-ций позволил сформулировать В.-Х. п., определяющие возможность процесса в зависимости от общего числа электронов во взаимодействующих орбиталях и стереохимии сближения. В табл. 1-3 суммированы В.-Х.п. для ци-клоприсоединения, электроциклич. и сигматропных р-ций соответственно.

Табл. 1. - РАЗРЕШЕННЫЕ ПО ОРБИТАЛЬНОЙ СИММЕТРИИ РЕАКЦИИ ЦИКЛОПРИСОЕДИНЕНИЯ В ЗАВИСИМОСТИ ОТ ОБЩЕГО ЧИСЛАhttps://www.medpulse.ru/image/encyclopedia/6/8/3/4683.jpegЭЛЕКТРОНОВ
https://www.medpulse.ru/image/encyclopedia/6/8/4/4684.jpeg

Табл. 2. - РАЗРЕШЕННЫЕ ПО ОРБИТАЛЬНОЙ СИММЕТРИИ ЭЛЕКТРОЦИКЛИЧЕСКИЕ РЕАКЦИИ В ЗАВИСИМОСТИ ОТ ОБЩЕГО ЧИСЛАhttps://www.medpulse.ru/image/encyclopedia/6/8/5/4685.jpeg ЭЛЕКТРОНОВ
https://www.medpulse.ru/image/encyclopedia/6/8/6/4686.jpeg

Табл. 3. - ПРАВИЛА ВУДВОРДА-ХОФМАНА ДЛЯ СИГМАТРОПНЫХ МИГРАЦИЙ АЛКИЛЬНЫХ И ИЗОЭЛЕКТРОННЫХ ИМ ГРУПП
https://www.medpulse.ru/image/encyclopedia/6/8/7/4687.jpeg

В случае димеризации этилена общее числоhttps://www.medpulse.ru/image/encyclopedia/6/8/8/4688.jpegэлектронов равно 4 (системаhttps://www.medpulse.ru/image/encyclopedia/6/8/9/4689.jpeg,https://www.medpulse.ru/image/encyclopedia/6/9/0/4690.jpeg=1). Следовательно (см. табл. 1), для этой р-ции s,s-присоединение должно реализоваться фотохимически, что и наблюдается экспериментально. Для s,s-присоединения 1,3-бутадиена и этилена (диеновый синтез) числоhttps://www.medpulse.ru/image/encyclopedia/6/9/1/4691.jpegэлектронов равно 6 (системаhttps://www.medpulse.ru/image/encyclopedia/6/9/2/4692.jpeg ) и, следовательно, предпочтительно термич. превращение.

Для всех видов перициклич. р-ций справедливо обобщенное В.- X. п.: в основном электронном состоянии разрешены по симметрии р-ции, для к-рых общее числоhttps://www.medpulse.ru/image/encyclopedia/6/9/3/4693.jpeg компонент нечетное. Для разрешенных по симметрии фотохим. р-ций указанное число - четное. Напр., для конротаторного s,а-замыкания 1,3-бутадиена имеется одна компонентаhttps://www.medpulse.ru/image/encyclopedia/6/9/4/4694.jpeg и р-ция относится к типу термически разрешенных.

Принцип орбитальной симметрии не имеет исключений, однако В.-Х.п. не являются абсолютными, и ряд р-ций, запрещенных по симметрии, практически вполне реализуем. Однако в этом случае они почти всегда осуществляются как постадийные, т.е. несогласованные процессы.

Кроме В.-Х.п. существуют другие подходы к теоретич. анализу перициклич. р-ций, напр. граничных орбиталеп теория. Как и В.-Х. п., они основаны на анализе топологии (узловых характеристик) циклич. системы взаимодействующих орбиталей реагентов в переходном состоянии.

Лит.: Вудворд Р., Хоффман Р., Сохранение орбитальной симметрии, пер. с англ., М., 1971;Минкин В. И., Симкин Б. Я., Миняев Р. М., Теория строения молекул, Электронные оболочки, М., 1979. В. И. Минкин.


1-винил-2-пирролидон В массе Вагнера реакция Вагнера-меервейна перегруппировки Вазелины Вазопрессин Вакуум Вакуумметры Вакуумформование полимеров Валентность Валентные углы Валентных связей метод Валериановые кислоты Валин Валлаха перегруппировка Вальденовское обращение Вальтерилацетат Вальцевание полимеров Ван слайка метод Ван-дер-ваальса уравнение Ван-дер-ваальсово взаимодействие Ван-дер-ваальсовы кристаллы Ван-дер-ваальсовы радиусы Ванадатометрия Ванадаты Ванадий Ванадийорганические соединения Ванадия галогениды Ванадия оксиды Ванилаль Ванилин Вариантность системы Вариационный метод Велера реакция Верапамил Вербенол и вербеной Вердазильные радикалы Вестерберга реакция Весы Ветиверилацетат Ветиверкетон Ветинон Вещества Вещество Взвешивание Взрыв Взрывоопасность Взрывчатые вещества Вибрационная техника Вильгеродта реакция Вильсмайера реакция Вильямсона синтез Винилазолы Винилацетат Винилацетилен Винилиденфторид Винилиденхлорид Винилиденхлорида сополимеры Виниловые мономеры Виниловые эфиры Виниловый спирт Винилогия Винилпиридиновые каучуки Винилпиридины Винилсульфоновые красители Винилфторид Винилхлорид Винилхлорида сополимеры Винипласт Винные кислоты Вириальное уравнение Вирирование фотографического изображения Висбрекинг Вискоза Вискозиметрия Вискозные волокна Висмут Висмута галогениды Висмута оксиды Висмута сульфиды Висмутолы Висмуторганические соединения Витамин Витамин d Витамин u Витамин в12 Витамин в2 Витамин в3 Витамин в6 Витамин вс Витамин е Витамин к Витамин н Витамин рр Витамин с Витамины Виттига реакция Виц.. Влагомеры и гигрометры Влагопроницаемость Влажность Внедрения реакция Внутреннее вращение молекул Внутренняя энергия Внутрирезонаторная лазерная спектроскопия Вода Водно-угольные суспензии Воднодисперсионные краски Водоподготовка Водоразбавляемые лакокрасочные материалы Водород Водорода пероксид Водородная энергетика Водородный показатель Водородоподобные атомы Водостойкость Водоэмульсионные краски Возбужденные состояния Возгораемость Воздух Воздуха разделение Возмущений теория Волновая функция Волокна природные Волокна химические Волокниты Вольта-потенциал Вольтамперометрия Вольфа перегруппировка Вольфрам Вольфрама галогениды Вольфрама гексафторид Вольфрама карбиды Вольфрама оксиды Вольфрама сплавы Вольфрама сульфиды Вольфраматы Вольфрамовые кислоты Вольфраморганйческие соединения Воля-циглера реакция Воски Воспламенение Воспламенение в пожарном деле Воспламенительные составы Восстановители Восстановительное аминйрование Восстановление Вращательные спектры Вревского законы Всесоюзное химическое общество Вспышки температура Втор.. Второе начало термодинамики Вуда сплав Вудворда реактив Вудворда реакция Вудворда-хофмана правила Вулканизация Вымораживание Выпаривание Вырождение энергетических уровней Высаливание Высокомодульные волокна Высокомолекулярные соединения Высокочастотное титрование Высокоэластическое состояние Высшие жирные кислоты Высшие жирные спирты Выщелачивание Вюрца реакция Вяжущие лекарственные средства Вяжущие материалы Вязкость Вязкотекучее состояние