Словарь научных терминов
Второе начало термодинамики

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ, устанавливает существование энтропии как ф-ции состояния макроскопич. системы и вводит понятие абс. термодинамич. т-ры. Утверждает, что все процессы, протекающие с конечной скоростью, в принципе необратимы, и дает термодинамич. критерии для определения направленности процессов. Вместе с первым началом термодинамики - основа классич., или феноменологич., термодинамики, к-рую можно рассматривать как развитую систему следствий этих двух начал.

Существует неск. разл. формулировок В. н. т. и способов его обоснования, однако все они взаимосвязаны и в конечном счете эквивалентны. В частности, В. н. т. можно формулировать как невозможность создания вечного двигателя второго рода - устройства, в к-ром рабочее тело совершало бы в периодич. цикле работу, находясь в тепловом контакте с одним источником теплоты (В. Оствальд, 1888). Во всех реальных тепловых двигателях превращение теплоты в работу обязательно сопровождается передачей определенного кол-ва теплоты окружающим телам и изменением их термодинамич. состояния, т.е. необратимо. Согласно В. н. т., необратимость того или иного процесса означает, что систему, в к-рой произошел процесс, невозможно вернуть в исходное состояние без к.-л. изменений в окружающей среде. Процессы, допускающие возвращение в исходное состояние как самой системы, так и внеш. среды без к.-л. изменений в них, наз. обратимыми. Обратимы лишь квазистатич. процессы, представляющие собой непрерывную последовательность состояний равновесия и протекающие бесконечно медленно. Все естеств. процессы, происходящие с конечными скоростями, необратимы; они протекают самопроизвольно в одном направлении. Помимо перехода теплоты в работу в циклич. процессах, необратимыми являются, напр., процессы выравнивания т-ры (теплопроводность) или концентрации компонентов системы (диффузия), хим. р-ции.

Согласно наиболее общей формулировке В. н. т., бесконечно малое кол-во теплаhttp://www.medpulse.ru/image/encyclopedia/6/5/8/4658.jpeg, переданное системе в обратимом процессе, отнесенное к абс. т-ре Т, является полным дифференциалом ф-ции состояния 5, наз. энтропией. Для обратимых процессовhttp://www.medpulse.ru/image/encyclopedia/6/5/9/4659.jpeg dS; для необратимыхhttp://www.medpulse.ru/image/encyclopedia/6/6/0/4660.jpeg < dS. Для любых процессов (обратимых и необратимых) В. н.т. может быть обобщено записью dShttp://www.medpulse.ru/image/encyclopedia/6/6/1/4661.jpeg . В изолированных (замкнутых) системахhttp://www.medpulse.ru/image/encyclopedia/6/6/2/4662.jpeg и dShttp://www.medpulse.ru/image/encyclopedia/6/6/3/4663.jpeg0, т.е. возможны лишь процессы, сопровождающиеся увеличением энтропии (закон возрастания энтропии). В состоянии равновесия энтропия изолированной системы достигает максимума и никакие макроскопич. процессы в такой системе невозможны.

Первое начало термодинамики, представляющее собой закон сохранения энергии для систем, в к-рых происходят тепловые и мех. процессы, не позволяет судить об эволюции термодинамич. системы. Значение В.н.т. состоит в том, что оно позволяет выделить фактически возможные в системе процессы из всех допускаемых первым началом и определить состояние термодинамич. равновесия системы, в к-ром никакие макроскопич. процессы без изменения внеш. условий невозможны. Сочетание В.н.т. в формеhttp://www.medpulse.ru/image/encyclopedia/6/6/4/4664.jpegTdS с первым началом dU —http://www.medpulse.ru/image/encyclopedia/6/6/5/4665.jpeg, гдеhttp://www.medpulse.ru/image/encyclopedia/6/6/6/4666.jpeg-совершенная системой работа, приводит в общем случае необратимых процессов к неравенству: dUhttp://www.medpulse.ru/image/encyclopedia/6/6/7/4667.jpeg. Это неравенство позволяет устанавливать направление протекания самопроизвольных (необратимых) процессов в закрытых системах и критерии равновесия при постоянных значениях любой из пар параметров состояния: Т, р; Т, V; S, р; S, V. Так, в системах, находящихся при постоянных Т и р, процессы самопроизвольно идут в направлении убыли энергии Гиббса G = U + pV— TS, а в состоянии равновесия энергия Гиббса достигает минимума. Это относится, в частности, к хим. р-циям, растворению, изменениям агрегатного состояния и др. превращениям в-в. Последовательное применение В.н.т. к неравновесным системам и протекающим в них необратимым процессам составляет содержание термодинамики необратимых процессов.

Статистич. физика связывает энтропию с вероятностью осуществления данного макроскопич. состояния системы. Для системы из N частиц, обладающей энергией E, энтропия определяется как логарифм статистич. весаhttp://www.medpulse.ru/image/encyclopedia/6/6/8/4668.jpegданного равновесного состояния:http://www.medpulse.ru/image/encyclopedia/6/6/9/4669.jpeg , т.е. числа квантовых состояний в узком интервалеhttp://www.medpulse.ru/image/encyclopedia/6/7/0/4670.jpeg вблизи значения Е (k-постоянная Больцмана). Возрастание энтропии изолированной системы обусловлено ее переходом из менее вероятного в более вероятное состояние. Иными словами, эволюция такой системы осуществляется в направлении наиб. вероятного распределения энергии по отдельным частицам или подсистемам (см. Статистическая термодинамика). Однако вследствие флуктуации, обусловленных хаотич. движением образующих систему частиц, возможен переход системы из более вероятного в менее вероятное состояние; при этом энтропия системы уменьшается. Наличие флуктуации приводит к тому, что закон возрастания энтропии выполняется только в среднем для достаточно большого промежутка времени.

Само название "В. н. т." и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу; последующие формулировки связаны с именами У. Томсона, В. Оствальда, С. Карно, Л. Больцмана. Буквальное применение В. н. т. к Вселенной как целому привело Р. Клаузиуса к ошибочному выводу о неизбежности "тепловой смерти" Вселенной после достижения ею максимума энтропии.

Лит. см. при статьях Статистическая термодинамика. Химическая термодинамика. В. А. Михайлов.


1-винил-2-пирролидон В массе Вагнера реакция Вагнера-меервейна перегруппировки Вазелины Вазопрессин Вакуум Вакуумметры Вакуумформование полимеров Валентность Валентные углы Валентных связей метод Валериановые кислоты Валин Валлаха перегруппировка Вальденовское обращение Вальтерилацетат Вальцевание полимеров Ван слайка метод Ван-дер-ваальса уравнение Ван-дер-ваальсово взаимодействие Ван-дер-ваальсовы кристаллы Ван-дер-ваальсовы радиусы Ванадатометрия Ванадаты Ванадий Ванадийорганические соединения Ванадия галогениды Ванадия оксиды Ванилаль Ванилин Вариантность системы Вариационный метод Велера реакция Верапамил Вербенол и вербеной Вердазильные радикалы Вестерберга реакция Весы Ветиверилацетат Ветиверкетон Ветинон Вещества Вещество Взвешивание Взрыв Взрывоопасность Взрывчатые вещества Вибрационная техника Викасол Вильгеродта реакция Вильсмайера реакция Вильямсона синтез Винилазолы Винилацетат Винилацетилен Винилиденфторид Винилиденхлорид Винилиденхлорида сополимеры Виниловые мономеры Виниловые эфиры Виниловый спирт Винилогия Винилпиридиновые каучуки Винилпиридины Винилсульфоновые красители Винилфторид Винилхлорид Винилхлорида сополимеры Винипласт Винные кислоты Вириальное уравнение Вирирование фотографического изображения Висбрекинг Вискоза Вискозиметрия Вискозные волокна Висмут Висмута галогениды Висмута оксиды Висмута сульфиды Висмутолы Висмуторганические соединения Витамин Витамин d Витамин u Витамин в12 Витамин в2 Витамин в3 Витамин в6 Витамин вс Витамин е Витамин к Витамин н Витамин рр Витамин с Витамины Виттига реакция Виц.. Влагомеры и гигрометры Влагопроницаемость Влажность Внедрения реакция Внутреннее вращение молекул Внутренняя энергия Внутрирезонаторная лазерная спектроскопия Вода Водно-угольные суспензии Воднодисперсионные краски Водоподготовка Водоразбавляемые лакокрасочные материалы Водород Водорода пероксид Водородная энергетика Водородный показатель Водородоподобные атомы Водостойкость Водоэмульсионные краски Возбужденные состояния Возгораемость Воздух Воздуха разделение Возмущений теория Волновая функция Волокна природные Волокна химические Волокниты Вольта-потенциал Вольтамперометрия Вольфа перегруппировка Вольфрам Вольфрама галогениды Вольфрама гексафторид Вольфрама карбиды Вольфрама оксиды Вольфрама сплавы Вольфрама сульфиды Вольфраматы Вольфрамовые кислоты Вольфраморганйческие соединения Воля-циглера реакция Воски Воспламенение Воспламенение в пожарном деле Воспламенительные составы Восстановители Восстановительное аминйрование Восстановление Вращательные спектры Вревского законы Всесоюзное химическое общество Вспышки температура Втор.. Второе начало термодинамики Вуда сплав Вудворда реактив Вудворда реакция Вудворда-хофмана правила Вулканизация Вымораживание Выпаривание Вырождение энергетических уровней Высаливание Высокомодульные волокна Высокомолекулярные соединения Высокочастотное титрование Высокоэластическое состояние Высшие жирные кислоты Высшие жирные спирты Выщелачивание Вюрца реакция Вяжущие лекарственные средства Вяжущие материалы Вязкость Вязкотекучее состояние