Словарь научных терминов
Вакуумметры

ВАКУУММЕТРЫ (от вакуум и греч. metreo - измеряю), служат для измерения давления газов ниже атмосферного (см. Вакуум). Каждый из рассмотренных ниже типов В. рассчитан на измерение в определенной области давлений (рис. 1).
http://www.medpulse.ru/image/encyclopedia/9/2/1/3921.jpeg

Рис. 1. Диапазон измерения давлений разл. вакуумметрами.

Области применения в химии и хим. технологии: жидкостные - обычно в лаб. практике и для поверки В. др. типов; деформационные, вязкостные, тепловые, ионизационные - в системах управления вакуумированием непосредственно в производств. условиях; ионизационные (в т.ч. радиоизотопные) - для регулирования давления в криогенных системах, контроля кач-ва готовой продукции, в произ-ве особо чистых в-в и т.д.

Жидкостные (гидростатические) В. В одном из колен U-образной трубки (рис. 2) газ находится под измеряемым давлением ри, в другом - под известным (т. наз. опорным) роп. Разность давлений уравновешивается столбом жидкости высотой h и плотностью d:

http://www.medpulse.ru/image/encyclopedia/9/2/2/3922.jpeg

гдеhttp://www.medpulse.ru/image/encyclopedia/9/2/3/3923.jpeg-ускорение своб. падения. Обычно риhttp://www.medpulse.ru/image/encyclopedia/9/2/4/3924.jpegроп. Применяемые жидкости (ртуть или вакуумные масла) имеют при рабочей т-ре малое парциальное давление пара и химически нейтральны по отношению к газам и материалу трубки. Жидкостные В. могут быть с открытым (как на рис. 2) или закрытым коленом. В последнем случае ропhttp://www.medpulse.ru/image/encyclopedia/9/2/5/3925.jpeg0 и, следовательно, измеряется абс. давление газа. Достоинства жидкостных В.: простота конструкции, наглядность измерений. Недостатки: проникновение паров жидкости в вакуумную систему, небольшой диапазон определяемых давлений, большие габариты, недостаточная прочность конструкции, трудность автоматизации измерений и записи отсчетов. Погрешность до 10 Па.
http://www.medpulse.ru/image/encyclopedia/9/2/6/3926.jpeg

Рис. 1 Жидкостный вакуумметр с открытым коленом.

Деформационные В. Измеряемое давление воздействует на упругий элемент (мембрану, сильфон, спиральную трубку), деформация к-рого пропорциональна давлению и определяется оптич. или электрич. методом, либо непосредственно превращ. с помощью мех. передачи в показания стрелки прибора. Упругий элемент может также принудительно возвращаться в исходное положение посредством электрич. или пневматич. источников силы. В этом случае критерием давления служит компенсирующая сила или к.-л. др. величина, связанная с этой силой (напр., напряжение, ток, пневматич. давление). В мембранных В. (рис. 3)
http://www.medpulse.ru/image/encyclopedia/9/2/7/3927.jpeg

Рис. 3. Мембранный вакуумметр: 1-упругая мембрана; 2-неподвижная пластина; 3- изолятор.

разрежение определяют по изменению емкости конденсатора, образованного мембраной и неподвижной пластиной. Достоинства деформационных В.: простота и надежность конструкции, недостаток: небольшой диапазон измерений. Погрешность до 0,4%.

Компрессионные В. (В. Мак-Леода). Прибор состоит из баллона объемом V, двух капилляров одинакового диаметра d, один из к-рых запаян, и трубки, соединяющей В. с системой, где измеряется давление (рис. 4). Снизу вводится жидкость (обычно ртуть), к-рая отсекает в объеме V газ при измеряемом давлении ри и затем сжимает его до давления plhttp://www.medpulse.ru/image/encyclopedia/9/2/8/3928.jpegри в малом объеме запаянного капилляраhttp://www.medpulse.ru/image/encyclopedia/9/2/9/3929.jpeg , где h - высота части капилляра, не заполненного жидкостью. Давление р1 определяют по разности уровней столбов жидкости в запаянном и открытом капиллярах. По закону Бойля - Мариотта ри = p1V1/V, т.е. давление можно найти, если известны d и V. Благодаря небольшой погрешности (1-2%) компрессионные В. используют как образцовые при градуировке В. других типов.
http://www.medpulse.ru/image/encyclopedia/9/3/0/3930.jpeg

Рис. 4. Вакуумметр Мак-Леода.

Вязкостные В. Действие основано на зависимости вязкости разреженного газа от давления. В демпферном В. мера давления - время затухания колебаний в газе кварцевых нитей, закрепленных с одного или двух концов. В В. с вращающимися элементами (диски, коаксиальные цилиндры) момент силы от быстро движущегося элемента передается через газ к др. элементу, подвешенному на чувствительной подвеске. Мера давления -угол поворота неподвижного элемента. Вязкостные В. обладают высокой чувствительностью. Погрешность до 0,1%.

Тепловые В. Герметичные баллоны, внутри к-рых расположен нагреваемый электрич. током элемент. При изменении давления газа в баллоне изменяется теплоотвод от нагреват. элемента, что приводит к изменению его т-ры. Нагреват. элементом может служить тонкая металлич. проволока, т-ру к-рой измеряют с помощью термопары или по электрич. сопротивлению, полупроводниковый термистор с большим температурным коэф. сопротивления, а также длинная металлич. нить или биметаллич. пластина, т-ру к-рых находят по изменению линейных размеров либо по углу изгиба. Тепловые В. позволяют определять низкие абс. давления. Их недостатки: зависимость показаний от состава газа и т-ры окружающей среды, большая инерционность. Погрешность 10-40%.

Ионизационные В. Действие основано на ионизации молекул газа и измерении ионного тока, к-рый является ф-цией давления. В электронных В. ионизация осуществляется потоком электронов, испускаемых накаленным катодом. Такой В. снабжен еще двумя электродами - анодом и коллектором (рис. 5). Анод - сетка, создающая электрич. поле, к-рое ускоряет электроны. Коллектор имеет отрицат. потенциал относительно катода и собирает образующиеся в газе положит. ионы. Ионный ток в цепи коллектора служит мерой давления газа. Диапазон измерений (10-5 -1 Па) ограничен: при высоких давлениях - малым сроком службы и нарушением линейности градуировочной характеристики из-за возрастающей вероятности объемной рекомбинации ионов и увеличения тока вторичных ионов, также участвующих в ионизации; при низких давлениях - остаточным фоновым током коллектора, к-рый не зависит от давления.

Для измерения сверхвысокого вакуума применяют В., где фоновый ток коллектора значительно снижен. С помощью т. наз. лампы Байярда-Альперта (рис. 6) можно определять давление до 10-8 Па. В этом В. катод расположен вне анодной сетки, а коллектор (тонкая проволока) -внутри нее. Модулируя ионный ток в лампе посредством дополнит. электрода (тонкий стержень между анодом и коллектором), диапазон измерений удается расширить до 10-9 Па.
http://www.medpulse.ru/image/encyclopedia/9/3/1/3931.jpeg

Рис. 5. Ионизационный вакуумметр: 1 -катод; 2-анод; 3 - коллектор. Рис. 6. Лампа Байярда-Альперта: 1-катод; 2-анод; 3-коллектор. Рис. 7. Вакуумметр Лафферти: 1 -катод; 2-анод; 3-коллектор; 4-экран; 5-магнит.

В. Лафферти работает в магн. поле напряженностью Н (рис. 7). Это позволяет удлинить пути электронов в рабочем пространстве и обеспечить высокую эффективность ионизации при очень малом электронном токе. Ниж. предел измерений - 10-11 Па.

В ионизационных радиоизотопных В. для ионизации газа используют гл. обр.http://www.medpulse.ru/image/encyclopedia/9/3/2/3932.jpegизлучение. Особенность таких В. в отличие от электронных - отсутствие электрода, ускоряющегоhttp://www.medpulse.ru/image/encyclopedia/9/3/3/3933.jpegчастицы, энергия к-рых при радиоактивном распаде очень велика. Достоинство: строго линейная зависимость тока ионизации от давления, недостаток: не очень высокая чувствительность.

Погрешность нерадиоизотопных ионизационных В. 30-50%, радиоизотопных до 20%.

Магнитные электроразрядные В. Их действие основано на зависимости от давления газа тока самостоят. разряда, к-рый возникает в разреженном газе в скрещенных магнитном (напряженностью Н) и электрич. полях. Этими В. можно измерять сверхвысокий вакуум (до 10-12 Па). Электродная система прибора состоит из катода и анода (рис. 8).
http://www.medpulse.ru/image/encyclopedia/9/3/4/3934.jpeg

Рис. 8. Магнитные электроразрядные преобразователи: а-манометр Пеннинга; б-магнетронный; в-инверсно-магнетронный; 1-катод; 2-анод.

Торцы системы закрыты дисками, соединенными с катодом для предотвращения выхода заряженных частиц в осевом направлении. На анод подается напряжение, равное нескольким кВ, катод соединяется с усилителями постоянного тока и находится под нулевым потенциалом. Электроды помещаются в осевое магн. поле. В результате действия электрич. и магн. сил образующиеся своб. электроны движутся по замкнутым траекториям в пространстве между катодом и анодом, попадая на анод только вследствие столкновения с молекулами газа. Образовавшиеся при столкновениях ионы, траектории к-рых слабо искривляются магн. полем, движутся к аноду, а электроны в свою очередь начинают вращаться в пространстве катод - анод, вызывая ионизацию; возникает газовый разряд. По величине разрядного тока можно судить о разрежении.

Электроразрядные В. в отличие от ионизационных магнитных не имеют накаливаемого катода (это удобно для измерения разрежения, напр., в криогенных системах) и обладают большей чувствительностью. Недостатки: медленное возникновение самостоят. газового разряда при низких давлениях, необходимость очистки электродов при работе прибора в вакуумных установках, к-рые содержат пары масел. Ионизационные и магн. электроразрядные В. часто подключают к одной вакуумной системе, что позволяет последовательно включать в работу тот или иной прибор и управлять вакуумированием. Погрешность магн. электроразрядных В.-60% и более.

Лит.: Ничипорович Г. А., Вакуумметры, М., 1977; Ерюхин А. В., Основы вакуумных измерений, М., 1977. А. Н. Волдорин.


1-винил-2-пирролидон В массе Вагнера реакция Вагнера-меервейна перегруппировки Вазелины Вазопрессин Вакуум Вакуумметры Вакуумформование полимеров Валентность Валентные углы Валентных связей метод Валериановые кислоты Валин Валлаха перегруппировка Вальденовское обращение Вальтерилацетат Вальцевание полимеров Ван слайка метод Ван-дер-ваальса уравнение Ван-дер-ваальсово взаимодействие Ван-дер-ваальсовы кристаллы Ван-дер-ваальсовы радиусы Ванадатометрия Ванадаты Ванадий Ванадийорганические соединения Ванадия галогениды Ванадия оксиды Ванилаль Ванилин Вариантность системы Вариационный метод Велера реакция Верапамил Вербенол и вербеной Вердазильные радикалы Вестерберга реакция Весы Ветиверилацетат Ветиверкетон Ветинон Вещества Вещество Взвешивание Взрыв Взрывоопасность Взрывчатые вещества Вибрационная техника Викасол Вильгеродта реакция Вильсмайера реакция Вильямсона синтез Винилазолы Винилацетат Винилацетилен Винилиденфторид Винилиденхлорид Винилиденхлорида сополимеры Виниловые мономеры Виниловые эфиры Виниловый спирт Винилогия Винилпиридиновые каучуки Винилпиридины Винилсульфоновые красители Винилфторид Винилхлорид Винилхлорида сополимеры Винипласт Винные кислоты Вириальное уравнение Вирирование фотографического изображения Висбрекинг Вискоза Вискозиметрия Вискозные волокна Висмут Висмута галогениды Висмута оксиды Висмута сульфиды Висмутолы Висмуторганические соединения Витамин Витамин d Витамин u Витамин в12 Витамин в2 Витамин в3 Витамин в6 Витамин вс Витамин е Витамин к Витамин н Витамин рр Витамин с Витамины Виттига реакция Виц.. Влагомеры и гигрометры Влагопроницаемость Влажность Внедрения реакция Внутреннее вращение молекул Внутренняя энергия Внутрирезонаторная лазерная спектроскопия Вода Водно-угольные суспензии Воднодисперсионные краски Водоподготовка Водоразбавляемые лакокрасочные материалы Водород Водорода пероксид Водородная энергетика Водородный показатель Водородоподобные атомы Водостойкость Водоэмульсионные краски Возбужденные состояния Возгораемость Воздух Воздуха разделение Возмущений теория Волновая функция Волокна природные Волокна химические Волокниты Вольта-потенциал Вольтамперометрия Вольфа перегруппировка Вольфрам Вольфрама галогениды Вольфрама гексафторид Вольфрама карбиды Вольфрама оксиды Вольфрама сплавы Вольфрама сульфиды Вольфраматы Вольфрамовые кислоты Вольфраморганйческие соединения Воля-циглера реакция Воски Воспламенение Воспламенение в пожарном деле Воспламенительные составы Восстановители Восстановительное аминйрование Восстановление Вращательные спектры Вревского законы Всесоюзное химическое общество Вспышки температура Втор.. Второе начало термодинамики Вуда сплав Вудворда реактив Вудворда реакция Вудворда-хофмана правила Вулканизация Вымораживание Выпаривание Вырождение энергетических уровней Высаливание Высокомодульные волокна Высокомолекулярные соединения Высокочастотное титрование Высокоэластическое состояние Высшие жирные кислоты Высшие жирные спирты Выщелачивание Вюрца реакция Вяжущие лекарственные средства Вяжущие материалы Вязкость Вязкотекучее состояние