Словарь научных терминов
Бор

БОР (от позднелат. borax - бура; лат. Borum) В, хим. элемент III гр. периодич. системы, ат. н. 5, ат. м. 10,811. Прир. Б. состоит из двух стабильных изотопов - 10В (19,57%) и 11В (80,43%). Поперечное сечение захвата тепловых нейтронов 10B 3*10-25 м2, 11В 4*10-32 м2. Конфигурация внеш. электронной оболочки 2s22р; степень окисления + 3, редко + 2; энергия ионизации при последоват. переходе от В° к В5+ соотв. 8,29811, 25,156, 37,92, 259,30 и 340,13 эВ; атомный радиус 0,097 нм, ковалентный 0,088 нм, металлический 0,091 нм, ионный В3+ 0,025 нм (координац. число 4).

Содержание Б. в земной коре 5*10-3% по массе, в воде океанов - 4,6 мг/л. В природе в своб. виде не встречается. Важнейшие минералы - бура Na2B4O7*10Н2О, кернит Na2B4O7*4HaO. На земной пов-сти Б. мигрирует и концентрируется в рассолах озер и морей. Главные осадочные бо-ратные месторождения находятся в СССР, США, ГДР. Мировые запасы Б. ок. 100 млн. т.

Свойства. Б. - бесцв., серое или красное кристаллическое либо темное аморфное в-во. Известно более 10 алло-тропных модификаций Б., св-ва важнейших приведены в таблице. Образование той или иной модификации и их взаимные переходы определяются т-рой, при к-рой получают Б.: при 600-800°С образуется аморфный продукт (плотн. 2,35 г/см3;http://www.medpulse.ru/image/encyclopedia/5/0/3/3503.jpeg перехода аморфныйhttp://www.medpulse.ru/image/encyclopedia/5/0/4/3504.jpegромбоэдрич. модификация 5,02 кДж/моль), до 1000°С-http://www.medpulse.ru/image/encyclopedia/5/0/5/3505.jpegромбоэдрич. модификация (красные кристаллы), до 1200°С-http://www.medpulse.ru/image/encyclopedia/5/0/6/3506.jpeg ромбоэдрическая (наиб, устойчивая форма), до 1500 °С - тетрагональные модификации. Расплав обычно кристаллизуется вhttp://www.medpulse.ru/image/encyclopedia/5/0/7/3507.jpegромбоэдрич. модификацию, в к-рую переходят и все остальные формы выше 1500°С. В интервале 1000-1500°С можно одновременно получить смесь разл. модификаций. Кристаллич. решетки всех модификаций Б. построены из икосаэдров В12 - полиэдрич. электронодефицитных структур, содержащих наряду с двухэлектронными двухцентровыми хим. связями В—В многоцентровые двух-электронные связи.

Ниже приводятся св-ва р-ромбоэдрич. Б.: т. пл. 2074°С, т. кип. 3658°С; С° 11,09Дж/(моль-К);http://www.medpulse.ru/image/encyclopedia/5/0/8/3508.jpeg 50,2 кДж/моль,http://www.medpulse.ru/image/encyclopedia/5/0/9/3509.jpeg 560кДж/моль (О К),http://www.medpulse.ru/image/encyclopedia/5/1/0/3510.jpeg 512кДж/моль; S°298 5,90 Дж/(моль*К) [для газа 153,2 ДжДмоль • К)]; ур-ние температурной зависимости давления пара lg p (атм) = = 7,239-28,840/T(1781-2152 К); температурный коэф. линейного расширения (4,8-7,0)*10-6-1 (293-1300 К); теплопроводность при 300 К 2,6-10-3 Вт/(м*К); дебаевская т-ра 1220 К;http://www.medpulse.ru/image/encyclopedia/5/1/1/3511.jpeg (0,7-4,0)*109 МОм*м (88 К), 105 МОм*м (200 К), 0,05 МОм*м (500 К). Б. - полупроводник р-типа; ширина запрещенной зоны по данным электрич. и оптич. измерений соотв. 1,42 и 1,53 эВ; дырочная проводимость 55*104, электронная 104 м2/(В*с); постоянная Холла 7*10-3 м3/Кл (298 К); концентрация собств. носителей тока 5*1014(433 К) и 9*1019 м-3П073 К). Б. диамагнитен, магн. восприимчивость — 0,78*10-9 (298 К). Для монокристаллов показатель преломления 3,44 (при длине волныhttp://www.medpulse.ru/image/encyclopedia/5/1/2/3512.jpeg 0,45мкм), коэф. поглощения 10-2 м-1 (приhttp://www.medpulse.ru/image/encyclopedia/5/1/3/3513.jpeg 1,3-3,8 мкм).

По твердости Б. занимает второе (после алмаза) место среди всех в-в: твердость по Моосу 9,3, по Виккерсу 274,4 ГПа, по Кнупу 2460; микротвердость 30,4 ГПа. Модуль Юнга 282,2 ГПа (для борного волокна 411,6 ГПа);http://www.medpulse.ru/image/encyclopedia/5/1/4/3514.jpeg 147 МПа (293 К), 882 МПа (1273 К) (для борного волокна 13,7 ГПа при 1330-1890 К); линейный коэф. сжимаемости 1,8*10-7 (303 К), объемный 3*10-7 (293 К). Б. очень хрупок, в пластич. состояние переходит выше 2000 °С.

Химически Б. довольно инертен (особенно кристаллический). К-ты, не являющиеся окислителями, с Б. не реагируют, конц. HNO3 и царская водка окисляют его до борной кислоты Н3ВО3. При сплавлении со щелочами на воздухе либо при взаимод. с расплавл. Na2O2 или смесью KNO3 и Na2CO3 Б. образует бораты. С Н2 он непосредственно не взаимод., бороводороды получают косвенным путем. Выше 1200°С Б. реагирует с N2 (а также с NH3), давая бора нитрид BN. В р-циях с F2 (ок. 20 °С), с С12 (ок. 400 °С), с Вг2 (ок. 600 °С), с 12 (ок. 700 °С) образует тригалогениды ВНа13 (см. Бора трифторид, Бора трихлорид)-бесцв. дымящие на воздухе летучие соед., к-рые легко гидролизуются водой, склонны к образованию комплексных соед. типа Н[ВНа14]. Для трибромида ВВr3 т. пл. -46°С, т. кип. 89,8°С; плотн. 2,65 г/см3. Для трииодида В13 т. пл. 49,8°С, т. кип. 210°С (с разл.); плотн. 3,3 г/см3. Известны также низшие галогениды В2На14, В4На14, В8На18, содержащие в молекуле связи В—В. Выше 500°С Б. реагирует с газообразными HF и НС1 с выделением Н2.

С серой ок. 600°С, а также в атмосфере H2S или CS2 при 930°С Б. образует сульфид B2S3 (т. пл. 310°С; плотн. 1,55 г/см3), с Se выше 700°С - селенид B2Se3, с Р и As выше 900°С - соотв. фосфиды (ВР, В5Р) и арсениды (BAs, B6As), отличающиеся высокой хим. и термин стойкостью.

ХАРАКТЕРИСТИКА КРИСТАЛЛИЧЕСКИХ МОДИФИКАЦИЙ БОРА
http://www.medpulse.ru/image/encyclopedia/5/1/5/3515.jpeg

ВР и BAs (т. пл. выше 2000°С) - высокотемпературные полупроводники.

При взаимод. Б. (или В2О3) с С выше 2000°С получают бора карбиды В12С3 и В13С2, с Si выше 1000°С - силициды B6Si (т. разл. 1864°С), B4Si (т. разл. 1345°С), B3Si и В125i - кристаллич. в-ва, не разлагаемые водой и р-рами щелочей и к-т; применяются как огнеупоры и материалы регулирующих и защитных устройств ядерных реакторов. С большинством металлов при высоких т-рах Б. образует бориды.

Получение. Буру и кернит разлагают H2SO4 при 100°С, нерастворимый остаток отфильтровывают. Фильтрат охлаждают до 15 °С, при этом выпадают кристаллы Н3ВО3; к-ту обезвоживают ок. 235°С с образованием В2О3. Аморфный Б. получают восстановлением В2О3 магнием, Na, Са, Zn, К или Fe, кристаллический - восстановлением галогенидов Б. (в осн. ВС13 или BF3) водородом или разложением галогенидов и гидридов Б. (в осн. В2Н6) при 1000-1500°С. Б. получают также электролизом расплава Na[BF4] или K[BF4] (образуются при взаимод. соотв. NaOH или КОН либо солей Na или К с Н [BF4]), чистый кристаллический (менее 0,05% примесей) - разложением ВВr3 на танталовой или вольфрамовой нити ок. 1300°С в присут. Н2 или разложением В2Н6 и В13 при 700-1000°С. Высокой степени чистоты (10-3-10-4% примесей) достигают зонной плавкой или вытягиванием монокристаллов из расплава.

Определение. Осн. метод выделения Б. из смеси - отгонка в виде борнометилового эфира В(ОСН3)3 из кислых р-ров. Эфир гидролизуют до Н3ВО3, к-рую титруют щелочью в присут. маннита. Гравиметрически Б. определяют в виде Са(ВО,)2, образующегося при взаимод. В(ОСН3)3 с Са(ОН)2, флуориметрически - по фиолетово-синему окрашиванию с хинали зарином или диаминоантраруфином, а также при помощи куркумина. Качественно Б. обнаруживают по буро-красному окрашиванию куркумовой бумаги или по зеленому окрашиванию пламени при сгорании В(ОСН3)3.

Применение. Б. - компонент коррозионностойких и жаропрочных сплавов, напр. ферробора - сплава Fe с В (10-20%). Небольшая добавка Б. (1-3-10 %) значительно повышает мех. св-ва стали, сплавов цветных металлов и обусловливает мелкозернистость их структуры. Б. насыщают пов-сть стальных изделий (борирование) с целью улучшения их коррозионных и мех. св-в. Его используют в кач-ве упрочнителя композиционных материалов (в виде волокон), как полупроводник для изготовления терморезисторе в, счетчиков тепловых нейтронов, преобразователей тепловой энергии в электрическую. Б. и его сплавы применяют также как нейтронопоглощающие материалы для изготовления регулирующих стержней ядерных реакторов. Мировое произ-во Б. (без СССР) в виде соединений 2,4 млн. т (1980). Ок. 50% получаемых искусственных и прир. соед. Б. используют в произ-ве стекла, ок.. 30%-при получении моющих ср-в, ок. 4-5%-для произ-ва эмалей, глазурей, гербицидов, металлургич. флюсов.

Б. был открыт в 1808 Ж. Гей-Люссаком и Л. Тенаром и независимо от них-Г. Дэви.

Лит.: Бор, его соединения и сплавы, под ред Г. В. Самсонова, К., 1960; Немодрук А. А., Каралова 3. К., Аналитическая химия бора 5B10,811, M., 1964; Цагарейшвили Г. В., ТавадзеФ. Н., Полупроводниковый бор. М.. 1978. Н.Т.Кузнецов.


"бутилксантогенат" 1,3-бензодиоксол 1,3-бутадиен 1,4-бензодиазепин 4-трет-бутилциклогексилацетат N-бензоил-n-фенилгидроксиламин S-бензилтиуронийхлорид Байера-виллигера реакция Бактериальные удобрения Бактериородопсин Бактерициды Балата Баллиститы Бальзамы Барбамил Барбитуровая кислота Барботирование Барбье-виланда реакция Барий Барит Бария гидроксид Бария карбонат Бария нитрат Бария оксид Бария сульфат Бария титанат Бария фторид Бария хлорид Барта реакция Бартона правила Бартона реакция Батохромный сдвиг Безградиентный реактор Безотходные производства Безызлучательные переходы Бейльштейна проба Бекмана перегруппировка Белая сажа Белки Белки-переносчики Белоусова - жаботинского реакция Белые масла Бензальдегид Бензальхлорид Бензамид Бензанилид Бензантрон Бензидин Бензидиновая перегруппировка Бензизоксазол Бензизотиазол Бензил Бензиламин Бензиловая перегруппировка Бензилхлорид Бензилцианид Бензимидазол Бензины Бензины-растворители Бензйловый спирт Бензо- и маслостойкость Бензо-2,1,3-селенадиазол Бензо-2,1,3-тиадиазол Бензогексоний Бензоилацетон Бензоилпероксид Бензоилуксусный эфир Бензоилфторид Бензоилхлорид Бензоин Бензоиновая конденсация Бензойная кислота Бензойная смола Бензоксазол Бензол Бензолполикарбоновые кислоты Бензолсульфамиды Бензолсульфокислоты Бензолсульфохлориды Бензонитрил Бензопираны Бензопирены Бензопиридазины Бензопирилия соли Бензоптеридины Бензотиазол Бензотиофены Бензотриазол Бензотрифторид Бензотрихлорид Бензофенон Бензофураны Бензохиноны Берберин Бергамилат Бергаптен Бериллий Бериллийорганические соединения Бериллия оксид Бериллия фторид Берклий Бесстружковый анализ Бетаины Бетон Бизаболен Бикомпонентные нити Бикукулин Бимолекулярные реакции Биокоррозия Биологические методы анализа Бионеорганическая химия Биоорганическая химия Биополимеры Биосинтез Биосфера Биотехнология Биотин Биофлавоноиды Биохимия Биоциды Биоэлектрохимия Биоэнергетика Бирадикалы Бисфенол Битуминозные пески Битумные лаки Битумные материалы Битумы Битумы нефтяные Битумы твердых горючих ископаемых Биурет Биуретовая реакция Бифенил Бишлера реакция Бишлера-напиральского реакция Благородные газы Благородные металлы Блеомицины Блоксополимеры Блочная полимеризация Бобровая струя Бойля-мариотта закон Болотный газ Больцмана постоянная Бона-шмидта реакция Бор Бора карбиды Бора нитрид Бора оксиды Бора трифторид Бора трихлорид Боразол Бораты неорганические Бораты органические Бориды Борнеолы Борные кислоты Борные руды Борные удобрения Бороводороды Боровский радиус Борогидриды металлов Бородина - хунсдиккера реакция Боропластики Борорганические полимеры Борорганические соединения Ботулинические токсины Брауна правило селективности Брауна реакция Брауна-уокера реакция Бредта правило Бризантные взрывчатые вещества Брожение Бром Броматометрия Броматы Бромбензилцианид Бромбензолы Бромирование Бромное число Бромпирогалловый красный Бромстирол Бронзы Бронзы оксидные Бруцин Брюстера метод Брёнстеда уравнение Буво-блана восстановление Букарбан Бульвален Бумага Бумага синтетическая Бумажная хроматография Бура Бурые угли Бутадиен-нитрильные каучуки Бутадиен-стирольные каучуки Бутадиеновые каучуки Бутадион Бутанолы Бутаны Бутены Бутилакрилаты Бутиламины Бутилацетаты Бутиленгликоли Бутилены Бутилкаучук Бутиллитий Бутилметакрилаты Бутиловые спирты Бутиндиолы Бутиролактон Бутлерова реакция Буферный раствор Буфотенин Бухерера реакции Бухнера - курциуса - шлоттербека реакция Бытовая химия Бэмфорда-стивенса реакция Бёрча реакция Трет-бутилгидропероксид Трет-бутилпероксид