Словарь научных терминов
Биоорганическая химия
БИООРГАНИЧЕСКАЯ ХИМИЯ, изучает связь между строением орг. в-в и их биол. ф-циями, используя в осн. методы орг. и физ. химии, а также физики и математики. Объекты изучения Б.х. - биологически важные прир. и синтетич. соединения, гл. обр. биополимеры, а также витамины, гормоны, антибиотики, прир. феромоны и сигнальные в-ва, биологически активные в-ва растит. происхождения, внутриклеточные регуляторы, а также синтетич. регуляторы биол. процессов - лек. препараты, пестициды и др. К осн. задачам Б. х. относятся:

1. Разработка методов выделения и очистки прир. соединений; характерная особенность Б. х. - использование при этом специфич. биол. ф-ций изучаемого в-ва для контроля стадий очистки (напр., контроль чистоты антибиотика ведется по его антимикробной активности, гормона - по его влиянию на определенный физиол. процесс и т.д.).

2. Определение строения и конфигурации изучаемого соед., для чего используют разл. методы, в первую очередь химические: гидролиз, окислит. расщепление, расщепление по специфич. фрагментам (напр., по остаткам метионина при установлении строения пептидно - белковых в-в, расщепление по 1,2-диольным группировкам углеводсодержащих в-в). Широко используются также физ. и физ.-хим. методы -ЯМР, масс-спектрометрия, ЭПР, рентгеноструктурный анализ, мёссбауэровская спектроскопия и др. На основе глубокого изучения механизма широко используемых при изучении строения р-ций и влияния условий на их течение созданы и находят широкое применение автоматич. устройства, обеспечивающие быстрое решение стандартных задач, особенно в аналит. химии пептидно-белковых в-в (анализаторы для определения количеств. аминокислотного состава, секвенаторы для выяснения последовательности аминокислотных остатков и др. - см. Белки). Важное значение при изучении строения сложных биополимеров имеет использование ферментов, особенно специфично расщепляющих изучаемое в-во по строго определенным связям. Такие ферменты имеют очень большое значение в изучении пептидно-белковых в-в (трипсин, протеиназы, расщепляющие связи по остаткам глутаминовой к-ты, пролина и др. аминокислотным остаткам), нуклеиновых к-т и полинуклеотидов (нуклеазы, рестриктазы), углеводсодержащих полимеров (гликозидазы, в т. ч. специфические - галактозидазы, глюкуронидазы и т.д.).

Для повышения эффективности применения хим. и физ.-хим. методов изучения структуры анализу подвергают не только прир. в-ва, но и их производные, содержащие характерные, специально вводимые группировки и меченые атомы, напр. путем выращивания продуцента на среде, содержащей меченые аминокислоты или др. радиоактивные предшественники, в состав к-рых входят тритий, радиоактивный углерод или фосфор. Достоверность данных, получаемых при изучении сложных белков, значительно повышается, если это изучение проводят в комплексе с исследованием строения соответствующих генов.

3. Разработка методов синтеза как самих прир. биологически важных в-в, так и ряда их аналогов. Для относительно просто построенных низкомол. соед. встречный синтез до сих пор является важным критерием правильности установленной структуры. Для биополимеров сравнение прир. в-ва с синтезированным образцом обычно не может служить надежным критерием правильности ранее определенной структуры. Однако, как и в случае низкомол. соед., синтез биополимеров и их аналогов необходим для решения след. важной задачи Б. х. - изучения зависимости биол. св-в от строения изучаемого в-ва.

4. Изучение зависимости биол. действия от строения. Этот аспект Б. х. приобретает все большее практич. значение. Весьма эффективные методы хим. и химико-энзиматич. синтеза сложных биополимеров (в-в белково-пептидной природы, сложных полинуклеотидов, включая активно функционирующие гены) наряду со все более совершенствующейся техникой синтеза относительно более простых биорегуляторов, а также методы избират. расщепления биополимеров позволяют все глубже понимать зависимость биол. действия от строения в-ва. Расширяющееся использование высокоэффективных ЭВМ дает возможность объективно сопоставлять многочисленные данные разных исследователей и находить общие закономерности. Найденные частные, а тем более общие закономерности, в свою очередь, стимулируют и облегчают синтез новых аналогов, что в ряде случаев (напр., при изучении пептидов, влияющих на деятельность мозга) позволяет находить практически важные синтетич. соед., превосходящие иногда по нек-рым св-вам прир. в-ва.

5. Выяснение химизма взаимодействия биологически активного в-ва с живой клеткой или с ее компонентами. Решение этой задачи открывает возможности создания оптимально активных соед. определенного типа действия. Первые успехи в этом направлении уже достигнуты. В частности, выяснен механизм действия соед., способных связывать и переносить в клетке ионы металлов (напр., калия), т. наз. ионофоров. К таким в-вам относятся валиномицин и его аналоги.

Б. х. сформировалась как самостоятельная область во 2-й пол. 20 в. на стыке биохимии и орг. химии, на основе традиционной химии прир. соединений. Ее развитие связано с именами Л. Прлинга (открытиеhttp://www.medpulse.ru/image/encyclopedia/4/5/4/3454.jpegспирали как одного из главных элеменов пространств. структуры полипептидной цепи в белках), А. Тодда (выяснение хим. строения нуклеотидов и первый синтез динуклеотида), Ф. Сенгера (разработка метода определения аминокислотной последовательности в белках и расшифровка с его помощью структуры инсулина), Дю Винь.о (хим. синтез биологически активного гормона окситоцина), Д. Бартона и В. Прелога (конформационный анализ), Р. Вудворда (полный хим. синтез мн. сложных прир. соединений, в т.ч. резерпина, хлорофилла, витамина В12) и др. крупных ученых.

В нашей стране в становлении Б. х. огромную роль сыграли работы Н.Д. Зелинского, А. Н. Белозерского, И. Н. Назарова, Н.А. Преображенского и др. Инициатором исследований по Б. х. в СССР в нач. 60-х гг. явился М. М. Шемякин. Им, в частности, были начаты работы но изучению циклич. депсипептидов, к-рые впоследствии получили широкое развитие в связи с их ф-цией как ионофоров.

В конце 60-х - начале 70-х гг. при синтезе в-в сложной структуры начали применять в кач-ве катализаторов ферменты (т. наз. комбинированный химико-энзиматич. синтез). Этот подход был использован Г. Кораной для первого синтеза гена. Использование ферментов позволило осуществить строго избирательное превращение ряда прир. соед. и получить с высоким выходом новые биологически активные производные пептидов, олигосахаридов и нуклеиновых к-т.

Наиб. интенсивно в 70-х гг. развивались: синтез олигонуклеотидов и генов; исследования клеточных мембран и полисахаридов; анализ первичной и пространств. структур белков. В кач-ве примера можно указать на успешное изучение структуры важных ферментов (трансаминаза,http://www.medpulse.ru/image/encyclopedia/4/5/5/3455.jpegгалактозидаза, ДНК-зависимая РНК-полимераза), защитных белков (http://www.medpulse.ru/image/encyclopedia/4/5/6/3456.jpegглобулины, интерфероны), мембранных белков (аденозинтрифосфатазы, бактериородопсин). Большое значение приобрели работы по изучению строения и механизма действия пептидов - регуляторов нервной деятельности (т. наз. нейропептиды).

Б. х. тесно связана с практич. задачами медицины и с.х-ва (получение витаминов, гормонов, антибиотиков и других лек. ср-в, стимуляторов роста растений и регуляторов поведения животных и насекомых), хим., пищ. и микробиол. пром-сти. В результате сочетания методов Б. х. и генетической инженерии стало возможным практич. решение проблемы получения сложных биологически важных в-в белково-пептидной природы, включая такие высокомолекулярные, как инсулин человека, интерферон, гормон роста человека.

Лит.: Шемякин М.М., "Ж. Всес. хим. об-ва им. Д.И. Менделеева", 1971, т. 16, №2, с. 122-44; Овчинников Ю.А., вкн.: Октябрь и наука. [1917-1977], М., 1977, с. 393-416; Дюга Г., Пенни К., Биоорганическая химия, пер. с англ.. М.. 1983. Ю.А.Овчинников.


"бутилксантогенат" 1,3-бензодиоксол 1,3-бутадиен 1,4-бензодиазепин 4-трет-бутилциклогексилацетат N-бензоил-n-фенилгидроксиламин S-бензилтиуронийхлорид Байера-виллигера реакция Бактериальные удобрения Бактериородопсин Бактерициды Балата Баллиститы Бальзамы Барбамил Барбитуровая кислота Барботирование Барбье-виланда реакция Барий Барит Бария гидроксид Бария карбонат Бария нитрат Бария оксид Бария сульфат Бария титанат Бария фторид Бария хлорид Барта реакция Бартона правила Бартона реакция Батохромный сдвиг Безградиентный реактор Безотходные производства Безызлучательные переходы Бейльштейна проба Бекмана перегруппировка Белая сажа Белки Белки-переносчики Белоусова - жаботинского реакция Белые масла Бензальдегид Бензальхлорид Бензамид Бензанилид Бензантрон Бензидин Бензидиновая перегруппировка Бензизоксазол Бензизотиазол Бензил Бензиламин Бензиловая перегруппировка Бензилхлорид Бензилцианид Бензимидазол Бензины Бензины-растворители Бензйловый спирт Бензо- и маслостойкость Бензо-2,1,3-селенадиазол Бензо-2,1,3-тиадиазол Бензогексоний Бензоилацетон Бензоилпероксид Бензоилуксусный эфир Бензоилфторид Бензоилхлорид Бензоин Бензоиновая конденсация Бензойная кислота Бензойная смола Бензоксазол Бензол Бензолполикарбоновые кислоты Бензолсульфамиды Бензолсульфокислоты Бензолсульфохлориды Бензонитрил Бензопираны Бензопирены Бензопиридазины Бензопирилия соли Бензоптеридины Бензотиазол Бензотиофены Бензотриазол Бензотрифторид Бензотрихлорид Бензофенон Бензофураны Бензохиноны Берберин Бергамилат Бергаптен Бериллий Бериллийорганические соединения Бериллия оксид Бериллия фторид Берклий Бесстружковый анализ Бетаины Бетон Бизаболен Бикомпонентные нити Бикукулин Бимолекулярные реакции Биокоррозия Биологические методы анализа Бионеорганическая химия Биоорганическая химия Биополимеры Биосинтез Биосфера Биотехнология Биотин Биофлавоноиды Биохимия Биоциды Биоэлектрохимия Биоэнергетика Бирадикалы Бисфенол Битуминозные пески Битумные лаки Битумные материалы Битумы Битумы нефтяные Битумы твердых горючих ископаемых Биурет Биуретовая реакция Бифенил Бишлера реакция Бишлера-напиральского реакция Благородные газы Благородные металлы Блеомицины Блоксополимеры Блочная полимеризация Бобровая струя Бойля-мариотта закон Болотный газ Больцмана постоянная Бона-шмидта реакция Бор Бора карбиды Бора нитрид Бора оксиды Бора трифторид Бора трихлорид Боразол Бораты неорганические Бораты органические Бориды Борнеолы Борные кислоты Борные руды Борные удобрения Бороводороды Боровский радиус Борогидриды металлов Бородина - хунсдиккера реакция Боропластики Борорганические полимеры Борорганические соединения Ботулинические токсины Брауна правило селективности Брауна реакция Брауна-уокера реакция Бредта правило Бризантные взрывчатые вещества Брожение Бром Броматометрия Броматы Бромбензилцианид Бромбензолы Бромирование Бромное число Бромпирогалловый красный Бромстирол Бронзы Бронзы оксидные Бруцин Брюстера метод Брёнстеда уравнение Буво-блана восстановление Букарбан Бульвален Бумага Бумага синтетическая Бумажная хроматография Бура Бурые угли Бутадиен-нитрильные каучуки Бутадиен-стирольные каучуки Бутадиеновые каучуки Бутадион Бутанолы Бутаны Бутены Бутилакрилаты Бутиламины Бутилацетаты Бутиленгликоли Бутилены Бутилкаучук Бутиллитий Бутилметакрилаты Бутиловые спирты Бутиндиолы Бутиролактон Бутлерова реакция Буферный раствор Буфотенин Бухерера реакции Бухнера - курциуса - шлоттербека реакция Бытовая химия Бэмфорда-стивенса реакция Бёрча реакция Трет-бутилгидропероксид Трет-бутилпероксид